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Abstract 

 

We give an account Carathéodory's axiomatization of measure theory and his lesser known 

work on the subject developed in the 1930's. We show how this led him to an 

algebraization of measure theory. 
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[CARATHÉODORY E A AXIOMATIZAÇÃO E ALGEBRIZAÇÃO DA TEORIA DA MEDIDA NA 

PRIMEIRA METADE DO SÉCULO XX.] 

 

 

Resumo 

 

Damos um requento da axiomatização da teoria da medida de Carathéodory e o seu 

trabalho na matéria, menos conhecido, desenvolvido nos 1930s. Mostramos como isso 

levou-o a uma algebrização da teoria da medida. 

 

Palavras-chave: Axiomatização, Teoria da medida, História do analise matemático. 

 

 

Introduction. The work of Jordan, Borel and Lebesgue. 

 

Measure theory is a branch of mathematics with a very interesting history whose 

origins, as an independent theory, can be traced to the second half of the XIX Century. This 

clearly does not mean that the notion of measure was nonexistent before this; it simply 

means that from this point onwards a new theory was born. 
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The concept of measure as such arose primarily, but not only, from research within 

integration theory. During the 1880's and 1890's the theory of integration had to deal with 

certain properties of infinite sets and in particular the discovery of sets that were nowhere 

dense but had positive outer content showed the relevance that these properties were to 

have with integration theory, and this in turn swiftly led to the rise of several measure 

theories.  

One of the first theories of this kind was developed by Otto Stolz in the years 1881-

1884 when dealing with a problem of arc length, (Stolz, 1884), and soon afterwards, in an 

independent manner, Georg Cantor introduced his own notion of content in (Cantor, 1884). 

It is also worthwhile noticing important contributions to the subject by Harnack and Peano 

in (Harnack, 1880) and (Peano, 1883) respectively. Nevertheless, the first of these theories 

that focused in depth on developing the link between integration and the “size” of a set was 

that of Camille Jordan. 

In 1892 Camille Jordan published a paper, Remarques sur les intégrales définies, 

(Jordan, 1892) in which he claims that the role that functions have in definite integrals is 

clear and has been well understood but that the influence that the sets on which the 

functions are defined has on the definite integral needs to be researched in much greater 

depth. 

Jordan shows that given any set E there correspond to it two fixed numbers E' and 

E'' which he calls E's inner and outer content.
1
 If these numbers coincide the set E is 

measurable with content equal to E'=E''. An important fact that is worth noting is that the 

content of a set will be a length, an area, a volume, etc. depending on the dimension of the 

set; that is, the concept of content which Jordan defines is an a priori generalization of the 

preexisting concepts of length, area, volume, etc.  

It is also important to note that the process carried out by Jordan is a constructive 

one. Jordan considers a set E in the plane and a decomposition of E into squares with sides 

of length r. He then considers the squares whose points are all interior to E, these squares 

form a domain S. The squares whose points are interior to E or have points on the boundary 

of E form a domain S+S'. As both S and S+S' are made up of squares their areas are well 

determined and shall be called S and S+S' respectively. Now, if r tends to zero, Jordan 

shows that S and S+S' tend to well defined limits a and A respectively. Jordan proves that 

this procedure is independent of the decomposition chosen for E and hence is able to give 

the following definitions: 

Definition.Let E be a set in the plane. a=ei will be called its interior content, A=ee its outer 

content and we shall say that E is measurable if ei=ee. 

An important consequence of this definition of measurability is that if      
 
   , 

where Ej are disjoint sets, then    
 
                          

 
     as this implies 

that if the sets Ej are measurable then so is E. It is important to note, specially in the light of 

what we shall show next, that this additive property is a finite property. 

This finite additivity is of great importance in the theory of multiple integrals. If we 

let     
 
   , Jordan then defines the upper and lower sums of a function f on E as  

                                                           
1
The word used by Jordan is étendue. 
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        and          

       and shows that if the size of the sets Ej tends to 0, 

then U and L tend towards fixed limits. In this way           exists if and only if these 

limits coincide, and in such a case is equal to this common value. 

This is how Jordan set Riemann's integration theory within the scope of his new 

measure theory. It is worth noting however that Jordan's measure theory contrasts greatly 

with the measure theory that Borel was soon to set forward. 

The first point of contrast arises from the fact that Borel's interest in measure theory 

was very different to Jordan's as his primary motivation came from within the theory of 

functions of complex variable, and in particular the analytic continuation of functions given 

as series  
  

      
  

where mn is an integer sequence bounded from above and the series 

     converges. 

Borel presents his theory of measure for the first time in 1898 in Lecons sur la 

théorie des fonctions, (Borel, 1898). To define his own concept of measure he considers 

only sets in the unit interval as follows: 

If a set consists of all the points contained in a countable union of disjoint intervals 

having total length s, we will say that the set has measure s. That is, if {In} is a countable 

family of disjoint intervals contained in [0,1] then the measure of the set     will 

be                where      is defined as the usual length of the interval. If two 

disjoint sets have measures s and s' respectively, then their union has measure s+s'; if one 

has a countable family of disjoint sets of measures s1, s2,… sn,… , then their union has 

measure s1 + s2 + … + sn+ ... In other words, if {En} is a disjoint countable family of sets 

contained in the unit interval, then the measure of      will be        . Finally, if 

      are two sets whose measures are given, then the measure of      will be given 

by            . Borel then goes on to give the following definition: 

Definition.The sets whose measure can be defined given these definitions shall be call 

measurable. 

Borel is careful to note that this does not mean that another definition of the measure 

of sets cannot be given.  

Three important consequences can be drawn from Borel's definition of 

measurability: the measure of a set is never a negative quantity, a set can have measure zero 

(even if it has the cardinality of the continuum) and a countable set always has measure 

zero. 

The properties with which Borel defines his concept of measure are also the ones 

needed to define the operations that enable the construction of new measurable sets; the 

only (implicit) restriction laid down by Borel is that these operations can only be applied a 

countable number of times. This in turn means that the cardinality of the set of measurable 

sets is equal to the cardinality of the continuum. 

Now, Borel argues in favour of the measure he has defined (versus a measure 

defined on a bigger class of sets) by saying that it is crucial that a measure has the 

fundamental properties he has defined. In other words, it is essential to note that a measure 

cannot be useful if it doesn't possess certain properties, that in this case have been 
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postulated a priori and it is from these properties that the class of measurable sets is 

derived. This method contrasts with Jordan's as his method was constructive and not 

descriptive as Borel's. Borel, (Borel, 1898, p. 48), says that “this way of proceeding is 

analogous to the methods introduced by Jules Drach in Algebra and the theory of 

differential equations […] In all cases we proceed with the same fundamental idea: define 

the new elements that are introduced with the help of their essential properties, i.e., those 

which are strictly necessary for the reasoning to follow.” 

Regardless however, of these different approaches to measure, both Jordan's and 

Borel's ideas were key in the development of Lebesgue's own measure theory at the turn of 

the XX Century. 

In 1902 Lebesgue published his doctoral dissertation Intégrale, Longueur, Aire, 

(Lebesgue 1902). The goal of the thesis is to give precise definitions of the concepts of 

definite integral, arc length and surface area. Thus, Lebesgue's interest in developing a 

measure theory coincides with that of Jordan as it originated within integration theory. 

Lebesgue introduces a new measure (different to both Jordan's and Borel's) in the 

same manner as Borel, i.e. by setting out first the properties that need to be met. He thus 

formulates the measure problem: 

 

Problem 1 (Measure problem).“We intend to attach to each bounded set 

a measure satisfying the following properties: 

1. There exist sets of non-zero measure. 

2. Two equal sets have the same measure. 

3. The measure of the sum of a finite or infinitely countable number 

of sets, pairwise without common points, is the sum of the measures of 

these sets. 

We shall solve this measure problem only for the sets that we call 

measurable.”(Lebesgue, 1902, p. 236) 

 

These three conditions can be thought of as axioms (or as fundamental properties 

using Borel's words) that a measure has to meet. We can see that Lebesgue's measure 

problem thus coincides with Borel's outset but Lebesgue then goes own to construct a 

measure and prove that it satisfies these properties much in the same way that Jordan 

constructed his content. 

To actually solve the measure problem Lebesgue first solves the problem of 

uniqueness. It is clear that any multiple of a solution will also solve the measure problem 

and Lebesgue sets the measure of an arbitrary bounded interval equal to 1; he then observes 

that if the unit interval is chosen then the measure of each bounded interval will coincide 

with its usual length. This clearly solves the uniqueness problem Lebesgue mentions but it 

is worthwhile to note that this does not solve the uniqueness issue in a wider sense. 

Lebesgue shows that as consequences of the conditions set out for the problem one 

will have that any set that contains a single point will have measure zero (as bounded sets 

with an infinite number of points must have finite measure) and that measure is always 

non-negative. 
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The process carried out by Lebesgue to actually construct a measure that will solve 

the problem set out is as follows: Let E be a bounded set; the points of E can be enclosed in 

a finite or countable collection of intervals in infinitely different manners. Let E1 be the set 

of points of one of these collections of intervals. The measure m(E) of E will be at most 

equal to the measure of E1. The infimum over all possible collections is thus an upper 

bound for m(E) and defines its outer measure me(E). In other words,       
                                          where In denotes an interval. 

Now, if all the points of E belong to a certain segment AB, then the measure of AB-E 

is at most me(AB-E) and hence the measure of E is at least m(AB)-me(AB-E). This number 

will be called the inner measure of Eand will be denoted by mi(E). It is easy to see that 

            is always the case. When equality holds Lebesgue will say that: 

Definition.E is a measurable set if me(E) = mi(E) and its measure, m(E) will be equal to this 

common value. 

Given this definition it is then shown that if E1, E2,... is a countable collection of 

measurable sets, then    
 
   and    

 
    are also measurable. It is again important to 

note that it is via these two operations applied a countable number of times that new 

measurable sets can be obtained. The difference with Borel's procedure is that Lebesgue 

does not limit himself to intervals to begin with and hence the class of Lebesgue 

measurable sets is larger that that of Borel measurable ones. In fact, it is easy to see that 

sets measurable in Borel's sense (sets that will be called B-measurable by Lebesgue) are 

measurable in the sense of Lebesgue but not vice versa. 

 

“[B-measurable sets] are defined by a countable number of conditions, 

their power set has the power of the continuum […] The set E formed by 

the points with abscissas   
  

 
 

  

  
 

  

  
   where the ai are equal to 

0 or 2, being perfect, is B-measurable. Its complement is formed by an 

interval  
 

 
 
 

 
  of length 

 

 
, by two intervals […] of length 

 

  
, by four 

intervals of length […] etc., and hence has measure[…] 1 and thus E has 

measure zero. E has the power of the continuum, hence with the points of 

E an infinite amount of sets, each having exterior measure zero and thus 

being measurable, can be formed. The power of the set of these sets is 

that of the set of sets of points; therefore there exist measurable sets that 

are not B-measurable, and the power of the set of measurable sets is that 

of the set of sets of points.”(Lebesgue, 1902, p. 240-241) 

 

On the other hand the difference between the measures of Jordan and Lebesgue can 

be found when dealing with interior points. If a set has interior points then the measures 

coincide, however if a set has empty interior then it is not Jordan measurable. In this 

manner, the set of Jordan measurable sets is also a proper subset of the set of Lebesgue 

measurable sets, nevertheless in this case one has that “the set of J-measurable sets has the 

same power as the set of sets of points.”(Lebesgue, 1902, p. 242) 
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These results about the cardinalities of B, J or L-measurable sets easily conduct the 

reader to wonder if the set of Lebesgue measurable sets coincides with the set of all 

bounded sets, that is, if any bounded set of reals is Lebesgue measurable. It is important to 

note however that Lebesgue does not attack this problem at all, he limits his comments on 

this issue to the following: “It has not be shown that the measure problem is impossible for 

sets (if they exist) whose interior and exterior measures do not coincide. But in what 

follows we will only find measurable sets.”(Lebesgue, 1902, p. 239) 

 

The existence of a non-measurable set. 

 

In 1905 Guiseppe Vitali published a paper, Sul problema della misura dei gruppi di 

punti di una retta, (Vitali, 1905), in which he proves that there exists a set of reals which is 

not Lebesgue measurable. In fact, what Vitali shows is that if the Axiom of Choice (AC)
2
 is 

used then the measure problem has no solution, or in other words, no real, normalized, non 

negative measure defined on all bounded sets that is translation invariant and countably 

additive exists: “the problem of measure of groups of points on a line is impossible […] our 

result implies that the possibility of the measure problem of groups of points on a line and 

that of well-ordering the continuum cannot coexist.” (Vitali, 1905) 

Given the fact that Vitali's proof uses AC, it was not welcomed by Lebesgue who, 

together with Borel and Baire rejected the use of AC in mathematics.
3
It is important to note 

that for many other mathematicians, for whom AC was valid, Vitali's proof represented an 

actual result that was mathematically correct and in fact, it was on this same track that 

Hausdorff showed in 1914 that Lebesgue's measure problem does not have a solution in n-

dimensional space (with n  3).
4
 To show this, Hausdorff presents the broad measure 

problem: Is it possible to assign to each bounded n-dimensional set E a number m(E) that 

satisfies the following conditions? 

1. m(E)   0. 

2. m(E0) = 1 for some set E0. 

3.                      if E1 and E2 are disjoint. 

4. m(E1) = m(E2) if E1 and E2 are congruent. 

What Hausdorff does (with the aid of AC) is to show the existence of a 

decomposition of the unit sphere's surface (in three (or more) dimensional space) into four 

sets  A,B,C and Q such that Q is countable, A, B and C are congruent and A is also 

congruent to    . Hence, if a measure satisfying conditions 1-4 were to exist, it would 

follow that m(A )= m(B) = m(C) and m(A) = m(   ) which is obviously absurd. 

                                                           
2
The Axiom of Choice had been explicitly stated and used by Zermelo for the first time in his 1904 proof that 

every set can be well-ordered. 
3For a history of the axiom of choice and its reception by the mathematical community at the beginning of the XX 

Century see (Hadamard, 1905) and (Moore, 1982). 
4See (Hausdorff, 1914)  Hausdorff explicitly mentions that the problem remains open for 1 and 2 dimensional 
space and in 1923 Banach, in (Banach, 1923)  proves that the problem in these spaces does in fact have a solution. 

For an account of the development of the measure problem from 1902 to 1930 and the work done by Lebesgue, 

Vitali, Hausdorff, Banach, Tarski, Kuratowski and Ulam amongst others, see (Martínez-Adame, 2013). 
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Hausdorff's work which questions the existence of more general measures, together 

with Carathéodory's work during 1914-1918 allowed for great development within measure 

theory. We believe it is important to stress that Lebesgue measure was a generalization of 

the concept of length and not a general abstract concept, Carathéodory, on the other hand, 

had a very different point of view. 

 

Carathéodory's early work in measure theory. 

 

Constantin Carathéodory upon his arrival in Göttingen in 1913 began the study of 

real functions. His starting point was the theory that had emerged as a result of Lebesgue's 

integral, and in 1914 he presented his formal measure theory in the article Über das lineare 

Mass von Punktmengen - eine Verallgemeinerung des Längenbegriffes, (Carathéodory, 

1914). He begins this article by stating that: 

 

“It seemed [...] appropriate to me to begin my presentation with a purely 

formal theory of measurability. A fundamental definition on measurability 

is announced, that in one sense is more general than the usual one 

because it applies to sets of points with infinite outer measures [...] this 

definition is much more convenient than the older one.” (Carathédory, 

1914, p. 404-405) 

 

Carathéodory defines an m-dimensional measure for subsets of q-dimensional 

euclidean space such that for m = 1 one obtains linear measure and for m = q one obtains 

Lebesgue measure. To do this Carathéodory defines an exterior measure via five basic 

properties that, in fact, play the roles of axioms in his theory. They are the following: 

1. To each set A in R
q
 a unique number, m*(A), which can be 0, positive or  , is assigned 

and is called the exterior measure of A. 

2. If B is a subset of A  R
q
 then m*(B)    m*(A). 

3. If A is the union of a countable sequence of sets A1, A2, … in R
q
, then m*(A)   m*(A1) 

+ m*(A2) +... This inequality holds only if the sum converges. 

4. If A1 and A2 are two sets in R
q
 and the distance between them is positive, then  m*(A1 + 

A2) = m*(A1) + m*(A2).
5
 

5. The exterior measure m*(A) of any set A in R
q
 is the infimum of m(B) taken over all 

measurable sets B that contain A. 

After the first three of these axioms Carathéodory presents the definition of a 

measurable set: 

Definition.A set A is measurable if for any subset W, one has m*(W) = m*(    ) + 

m*(     ). The measure m(A) of A is then defined by the equation m(A) = m*(A). 

It is important to note that after introducing this definition Carathédory proves 

various theorems and only after doing so introduces axioms 4 and 5. 

                                                           
5After this axiom, an axiom 4a is introduced: Intervals are measurable sets. 
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Carathéodory, in the same manner as his predecessors, defines an inner measure  m* 

by setting m*(A) = m*(B) – m*(B-A) for A subset of B. We note that the inner measure is 

defined in terms of the outer measure, as was the case in Lebesgue's work. The possibility 

of defining an inner measure independent of an outer measure was presented by Arthur 

Rosenthal in his Beiträge zu Carathéodory Mebarkeitstheorie, (Rosenthal, 1916). He 

presented an axiomatic definition of inner measure entirely independent of outer measure 

and also defined outer measure in an axiomatic way that turned out to be equivalent to 

Carathéodory's. 

In August 1914 Carathéodory began to write his book Vorlesungen über reelle 

Funktionen, (Carathéodory, 1918) that was published in 1918 but according to a note from 

the author himself was finished by November 1915. In the preface to this book 

Carathéodory states that he read the works of Vallée Poussin, Jordan, Baire, Hausdorff, 

Lindelöf, Young and Lebesgue and the book  presents itself as the culmination of the 

development in the theory that had started at the turn of the Century and as the beginning of 

the modern axiomatization of this branch of mathematics. 

On July 2, 1916 Carathéodory himself described his book in a letter to Féjer in the 

following way: 

 

“I have used the past year to write a book (unfortunately too thick) about 

real functions which is now being printed. It is no great deed but I believe 

that it will be useful, since Lebesgue's theory of integration will be 

presented in an easily understandable manner for the first time.”
6
 

 

This book turned out to be of fundamental significance to both Carathéodory and 

mathematical analysis, it was one of the reasons why Carathéodory was proposed as a 

corresponding member of the Mathematical-Physical Class of the Götingen Academy of 

Sciences in 1919. 

In the Introduction Carathéodory states that  

 

“The revolution the theory of real functions underwent as a result of the 

investigations of Mr. Lebesgue constitutes an event that today may be 

considered to be largely complete. Therefore an attempt to rebuild the 

theory from its foundations, and systematically, seemed mandatory to 

me.” (Carathéodory, 1918, p. v) 

 

Carathéodory defines outer measure m*(A) as the infimum of the (finite or 

countable) sums of q-dimensional volumes of the intervals that cover A and notes that this 

is a particular case of the general notion given by the axioms above. 

One of the points that we consider crucial to the further development of the theory is 

the explicit example given by Carathéodory of another set function that satisfies the 

axioms:        
        
       

   where    R
q
 is fixed and    R

q
. 

                                                           
6The original letter is in German, our translation has been taken from (Georgiadou, 2004, p. 109). 



Carathéodory and the axiomatization and algebraization of measure theory 

 

 

 
RBHM, Vol. 15, no. 30, p. 61-81, 2015  69 

 

We believe that this represented a turning point in measure theory as the existence of 

different measures meant that measure theory was now an independent field of study within 

mathematics with is own object of study: measures. 

In the case of Lebesgue's theory the measure in question had always been one that 

generalised the concepts of length, area, volume, etc. and it was this example given by 

Carathéodory that transformed the subject and made the goal of the theory to study 

measures in themselves and not just the sets on which the measures were defined. In this 

way measure theory became an abstract and general theory; even if it had been presented in 

a pre-axiomatic way since Borel, it is with Carathéodory and the publication of 

(Carathéodory, 1918)} that it became a theory on its own with its own objects. 

 

Carathéodory's axiomatization of measure theory. 

 

Now, having stressed the importance of Carathéodory’s 1918 text, it is relevant to 

note that it was republished in 1927 and soon afterwards Teubner requested a third printing 

but Carathéodory felt that by then the theory of real functions had changed considerably 

since 1918 and decided to modify his book accordingly before it was published again. In 

particular he wanted to include abstract spaces that were first introduced by Fréchet as the 

notion of integral had been extended to these spaces and in this way Lebesgue's theory, that 

had constituted the central topic of (Carathéodory, 1918) had to be incorporated to these 

more general theories. Carathéodory decided to take all this into account when preparing 

the new edition of his book. However, once this work began, Carathéodory discovered that 

these generalizations could be taken even further as what was really important were the 

properties that one required of the integral and not the elements over which integration was 

to be extended. In this way, Carathéodory presented a new series of works: 

 Entwurf für eine Algebraisierung des Integralbegriffs, 1938 

 Bemerkungen zur Axiomatik der Somentheorie, 1938 

 Die Homomorphien von Somen und die Multiplikation von Inhaltsfunktionen, 1939 

 Über die Differentiation von Massfunktionen, 1940 

 Bemerkungen zum Riesz-Fischerschen Satz und zur Ergodentheorie, 1941 

 Gepaarte Mengen, Verbände, Somenringe, 1942 

 Bemerkungen zum Ergodensatz von G. Birkhoff, 1944.
7
 

To include the ideas that began to develop in this new series Carathéodory decided 

to rewrite his book from 1918 in three volumes. The first volume Reelle Funktionen, Bd. I, 

Zahlen, Punktmengen Funktionen, (Carathéodory, 1939b), was published in 1939 and 

included all the material from his book prior to the concept of measure. 

The publication, in 1938, of  Entwurf für eine Algebraisierung des Integralbegriffs 

marked the beginning of a new axiomatization of measure theory. Carathéodory sent the 

manuscript to Arthur Rosenthal who commented that the general and axiomatic definition 

                                                           
7
See (Carathéodory, 1938a, 1938b, 1939a, 1940, 1941, 1942 ans 1944) respectively. 
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of sets struck him as “very amusing and, of course, surely new” and that the system of 

axioms seemed “natural and comprehensible”.
8
 

Of the two pending volumes of the Theory of Real Functions that had been formally 

announced by Carathéodory in the preface to Reelle Funktionen I, the second volume was 

to appear in 1943, however, Teubner was bombed and destroyed during the bombing of 

Leipzig and Carathéodory decided to revise the contents again. 

On March 24, 1949, in a letter addressed to Born, Carathéodory announced the 

following: 

 

“I also have another book on measure and integral in Boolean spaces. It 

had already been printed but was destroyed by fire in Leipzig in 1943. I 

have rewritten it. It will also be published by Birkhäuser.” (Carathéodory, 

1949) 

 

After the war Carathéodory went over the material of the second and third volumes 

and decided to write a single volume that was to be self-contained and covering all the 

material. However, Carathéodory died a year later on February 2, 1950 and it was 

Rosenthal, Steuerwald and Finsler who edited the volume and published it posthumously in 

1956 as  Mass und Integral und ihre Algebraisierung. 

This text constitutes a unified and systematic presentation of the general theory that 

Carathéodory began to develop in 1938. The concepts in this text are concepts that have 

been constructed in an ad hoc fashion for the establishment of a general theory of measure. 

That is, a theory that contains as particular examples not only the Euclidean theory but also 

measure theory as it developed in the XX Century. 

To achieve this unification new objects were needed; these objects were to have the 

properties of both sets with arbitrary elements and figures of elemental geometry that 

cannot be treated as sets of points. These objects were called somas by Carathéodory. They 

were first introduced in  (Carathéodory, 1938a) by an axiomatic definition. 

To study the final theory presented by Carathéodory in (Carathéodory, 1956) we 

first introduce the axioms that Carathéodory introduces in his 1938 papers, (Carathéodory 

1938a and b). The three sets of axioms are different and the evolution of the theory in 

Carathéodory's mind becomes evident upon their comparison as does his goal of a 

completely algebraic theory. 

The axioms in  (Carathéodory, 1938a) are the following: 

[Axiom 1, 1938a] All somas A, B,... form a set  . For any two somas it is always possible 

to know if  A = B or  A  B. The equality sign here expresses any relation that satisfies the 

following conditions, A = A, if A = B then B = A and if A = B and B = C then A = C. 

[Axiom 2, 1938a] To each pair of somas A, B a third soma     will be clearly assigned 

and will be called the union of A and B. The following rules are applied for the union: 

                                               . 

                                                           
8These quotations are taken from a letter from Rosenthal to Carathéodory dated February 20, 1938 that can be 

found in Teilnachlass Carathéodory. 
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After this second axiom Carathéodory defines what it means for a soma to be part of 

another soma:               and on this basis introduced the third axiom. 

[Axiom 3, 1938a] Given a countable sequence of somas A1, A2,…  there exists a minimal 

containing soma V that contains all somas in the sequence. This soma will be called their 

union and we write          . 

[Axiom 4, 1938a] There exists at least one soma O, the empty soma, that is a part of all 

somas. 

Given the last axiom it is now possible to define what it means for two somas to be 

disjoint: two somas A and B are disjoint,    , if the only soma that is part of both is the 

empty soma. 

[Axiom 5, 1938a] If a soma B is disjoint from all somas A1, A2, … then it is also disjoint 

from their union V. 

Finally, the last axiom establishes the difference between two somas in the 

following manner: 

[Axiom 6, 1938a] If A and B are any two somas, there is always at least one soma B1 that 

satisfies the following conditions simultaneously: 

                           
Carathéodory wrote (Carathéodory, 1938b) a few months later and the sixth section 

of this article, which in fact is only 9 pages long, is dedicated to “The axioms of the theory 

of somas”. As we have already noted, these axioms differ slightly from those presented in 

(Carathéodory, 1938a). 

 In this section Carathéodory defines a set    whose elements are the somas A,B, ... 

of the theory. After this he defines what is means for a soma to be contained in another 

soma and on this basis proves the following theorem: 

Theorem.If             then A = B. 

This is the first point that comes to our attention when comparing both texts from 

1938 as in the former the equality between somas is defined by the symbol = and all that is 

required is that this symbol be an equivalence relation. In the latter text, as we have just 

seen, the equality of somas is a theorem derived from the notion of containment. 

After introducing this theorem Carathéodory begins section 7 of his article in which 

he explicitly presents the new axioms for his theory. The first of these is announced by 

saying that “the existence of the union of somas is determined by the following axiom”: 

[Axiom 1, 1938b] Given a finite or countable sequence of somas A1, A2, …  there exists a 

soma V such that      for all j and such that if for some soma B,      holds for all j, 

then    . 

The union of somas is defined from this axiom: the union of somas A1, A2, …  is the soma V 

and we write          .. 

The second axioms guarantees the existence of the empty soma and is presented 

after two theorems relative to the union of somas. 

[Axiom 2, 1938b] There exists at least one soma O, the empty soma, that is a part of any 

soma. 
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On this basis the notion of disjoint somas is defined and finally axioms 3 and 4 are 

introduced and coincide with axioms 5 and 6 of (Carathéodory, 1938a). 

This work laid down the foundations for Carathéodory's seminal work on this topic 

which we present in the next section. 

 

Carathéodory's algebraization of measure theory. 

 

Carathéodory began his book, Mass und Integral und ihre Algebraisierung, by 

stating new and highly ambitious objectives: 

 

“George Boole (1815-1862), in his famous book on logic,  Laws of 

Thought, published in 1854, developed a symbolism that today is called 

Boolean algebra. The simplest example of such an algebra is that 

obtained by applying to sets the operations of forming unions, 

intersections, and differences (or passage from a set to its complement). 

It is clear from this that the theory of measure, which can be developed 

even for sets of arbitrary elements, need not lose its significance even for 

rings of elements of a Boolean algebra. 

Some ten years ago, I noticed that is is also possible to construct the 

analogue, on Boolean rings, of ordinary point functions, which makes 

possible the algebraization of the integral.”(Carathéodory, 1956, p. 5) 

 

It is important to that this goal is not only of theoretical interest but that the theorems 

and methods of proof that are to be developed show certain relations between objects that 

would otherwise have remained in the dark. Furthermore, these relations led to a 

development in the theory that Carathéodory caracterises as “organic, highly elementary 

and unified”. It is in this context that the concept of soma is strengthened. 

The first chapter of (Carathéodory, 1956) is dedicated to the study of somas but 

begins with a brief exposition of the axiomatic method and Carathéodory announces that 

his intention is to treat the theories of measure and integration within the framework of this 

method. As we have noted above both Borel and Lebesgue presented their theories in this 

way in an implicit form, however, Carathéodory aims to go much further not only via an 

axiomatization but by turning this theory into a purely algebraic one. 

Carathéodory presents yet another group of axioms for somas and states that the 

totality of somas that occur within any given problem will always be a set that will be 

denoted, in general, by   . 

[Axiom 1] Let a collection of somas A, B,... be given forming a non-empty set   . 

To every pair A, B of somas of     let there be assigned a third soma of    , 

denoted by     , and called the conjunction of A and B. This operation satisfies     
                        where the equality sign indicates that the two 

somas are identical, i.e., that the symbols on both sides stand for one and the same soma. 

Furthermore, for every pair A, B of somas of   , there is at least one some X of    for 

which       . 
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The operation     turns    into an Abelian group; this axiom was deliberately 

stated to fulfill this job. 

This next Theorem can be proved from Axiom 1: 

Theorem. There is precisely one soma O, the empty soma, for which the equation     
  holds identically for all X belonging to   . Furthermore, the equation       has for 

any arbitrary A only the one solution X = O. 

After the proof of this Theorem Carathéodory introduces the next axiom: 

[Axiom 2] To each pair A, B of somas in    in that order  there is assigned uniquely a 

third soma of    denoted by AB. For any three somas A, B and C, the following relations 

hold:                                           . 

Now, any system of somas A, B, ... for which axioms 1 and 2 hold is a ring. 

Carathéodory notes that it is not an Abelian ring, nevertheless it does satisfy AO = OA = O 

for any     . 

[Axiom 3.] Every soma A satisfies AA = A. 

That is, the ring that these axioms are posited to define is a Boolean ring. And using 

this axiom it can be shown that the operation defined by the second axiom is in fact 

commutative. 

Theorem. For any somas A and B the equations                       hold and, 

furthermore,       implies      . 

Once Carathéodory has shown that AB = BA for any two somas he defines the 

intersection of A and B precisely as AB. 

Before introducing the fourth and final axiom, Carathéodory presents the following 

definitions: 

Definition. A soma A is called a subsoma of the soma B if AB = A. To express that A is a 

subsoma of B we write           .  

Definition. A set    is called partially ordered if a relation     is defined for certain 

pairs of elements A, B of    in such a way that both      for all       and if     

and    , then    . 

The following theorem, regarding the union of somas, is proved following these definitions: 

Theorem. Any two somas A and B have a (unique) minimal containing soma, called their 

union and denoted by    . The union can be defined by           . 

And the concept of union can be extended to infinite collections: 

Definition.We say that         is the union of the somas A of some set   of somas if V 

satisfies that if                                              . 

These two conditions in the definition guarantee that if a union of somas exists then 

it is unique and it can be shown that the union of a finite collection of somas always exists. 

However, the fact that the union of a countable collection of somas exists needs an axiom: 

[Axiom 4.] Every sequence A1, A2, ... of countably many somas has a minimal containing 

soma called the union of the Aj and written         or     . 

This axiom does not follow from the previous ones and it is important to note that it 

doesn't imply that the union of an arbitrary collection of somas always exists. To show this, 

Carathéodory takes as somas the sets of Lebesgue measure zero in R, the sets that consist 
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of a single point in [0,1] constitute a set of somas but their union (the whole interval) is not 

one of the somas as it does not have measure zero. 

It is on the basis of these axioms that Carathéodory is to develop his theory. It is 

very important to note that the axioms are propositions that deal with these new objects: 

somas; and not measure as one could have imagined when comparing with existing 

measure theories. 

With these axioms the algebraic theory of somas is established to then introduce the 

concept of soma functions and further on that of measurable function. 

Definition. A soma U in the domain of definition   of a soma function F(X) is said to be F-

measurable, if for every soma A which, together with AU and     , belongs to   and for 

which in addition the numbers F(A), F(AU) and F(    ) are finite, the equality F(A) = 

F(AU) + F(    ) always holds. 

And we note that for a soma U to be F-measurable it is not necessary for F(U) to be 

finite. Now, to introduce the concept of measure Carathéodory needs the following 

definitions: 

Definition. A set of somas   is called additive if whenever     and    , the union 

    of these two somas is also an element of    Analogously, a set of somas   is called 

multiplicative, conjunctive, and subtractive, according as     and     together imply 

    ,       and       . 

A set of somas  which is additive, multiplicative, conjunctive and subtractive is called a 

ring of somas. 

Carathéodory notes that another terminology is available for these objects. He notes 

that Hausdorff, in his Mengenlehre of 1914, calls a set that is closed under the four basic 

binary operations a field. However, if the operations on point sets are considered as 

Boolean operations then the notions of field and ring coincide. Carathéodory also notes that 

in his previous publications he assumed for his treatment of measure and the integral the 

usages of set theory and hence, used the term field of somas; nevertheless the development 

of lattice theory and Boolean algebras made him change his terminology. The following 

definition is also an example of this change in terminology, Hausdorff called the concept 

Carathéodory is defining a -field. 

Definition. A ring of somas which is at the same time a countably additive set of somas is 

called a complete ring. 

Finally, Carathéodory arrives at the crucial point for which the previous theory has 

been developed: 

Definition. A soma function (X) is called a measure function whenever it satisfies the 

following conditions: 

1. its domain of definition   is a complete ring; 

2. if  whenever an at most countable number of somas    of   and any other soma B 

of   satisfy the relation          , then the relation (B)  (A1)  + (A2) 

+ … also holds; 

3. for the empty soma O we have (O)=0. 

These conditions can be used to show that (X) is nonnegative for all somas X. 
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This definition in which it is easy to recognize both Lebesgue's measure as the 

modern notion of measure has been constructed by Carathéodory in an axiomatic manner as 

we have shown starting from new objects in such a way that it has become a purely 

algebraic notion that can be applied to the elements of any Boolean algebra. This in turn 

allows the introduction of a theory of integration which culminates Carathéodory's theory 

and in which the integral is defined by means of the following theorem: 

Theorem. Let (X) be a measure function and f a -measurable, non-negative place 

function, whose domain of definition M is a normal soma of the ring of measurability f(X). 

Then there is one and only one measure function (X) that is cometric to (X) and 

absolutely continuous with respect to (X), that is defined for all subsomas of M, and that 

satisfies the relations (A)(A)   (A)   (A)(A)  for all those subsomas A of M for 

which 0 < (A) < ∞. Here (A) and (A) denote the infimum and the supremum of f on the 

soma A. 

 The measure function (X) is called the integral of f on X for the measure function 

f(X) and is denoted by          . 

This theory of integration has a particular case the Lebesgue integral which also is 

built upon a theory of measure. This is interesting as there are may cases of integrals 

defined during the twentieth century whose foundations lie on ideas similar to the ones used 

by Riemann to define his integral and not on a theory of measure. This, however, will be 

the topic of a second paper on the development of integrals that generalise the Lebesgue 

integral. What is in fact important for this paper is to note the algebraic aspect of 

Carathéodory's contribution to the theory of integration. 

In (Kappos, 1974, p. 253), for instance, Demetrios Kappos notes that since 

probability is a normed measure on a Boolean algebra of events “then the algebraic 

measure theory of Carathéodory is very suitable to introduce the concept of probability as a 

strictly positive and normed measure.” 

 

Probability Theory: Halmos and Kolmogorov. 

 

Andrei Kolmogorov's Grundbegriffe der Wahrscheinlichkeitsrechnung of 1933 is 

well known as the symbol of modern probability theory as it laid out the axiomatic 

foundations of the theory; however, it will not be object of our discussion here. We would 

like to focus on a paper written by Paul Halmos in 1944, The Foundations of Probability 

and a paper published by Kolmogorov in 1948, Complete metric Boolean Algebras. 

Kolmogorov's paper was originally given as a lecture in Russian at the VI Congress of 

Polish Mathematicians and published in French as Algèbres de Boole mètriques complètes, 

(Kolmogorv, 1948). 

Halmos, (Halmos, 1944, p. 493), begins his paper by stating that “probability is a 

branch of mathematics” and then states very clearly what the intention of the paper is: 

“The purpose of this paper is exposition, exposition intended to convince 

the professional mathematician that probability is mathematics.” 
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In order to achieve this goal Halmos intends to give at least a partial answer to the 

question “What is probability?” It is the answer to this question that we find relevant for 

our present topic of study. 

After posing this question Halmos dedicates the second section of his text to 

Boolean Algebras and concludes that: 

 

“The mathematical theory of probability consists of the study of Boolean 

-algebras.This is not to say that all Boolean -algebras are within the 

domain of probability theory. In general statements concerning such 

algebras and the relations between their elements are merely qualitative: 

probability theory differs from the general theory in that it studies also 

the quantitative aspects of Boolean algebras.” (Halmos, 1944, p. 496) 

Halmos then goes on to introduce measure spaces and claims that it can be shown 

that the theories of measure and probability are coextensive: 

 

“If B is any Boolean -algebra and P a probability measure on B, then 

there exists a measure space  such that the system B is abstractly 

identical with an algebra of subsets of reduced by identification 

according to sets of measure zero, and the value of P for any event a is 

identical with the values of the measure for the corresponding subsets of 

.” (Halmos, 1944, p. 499) 

 

Kolmogorov presents these ideas very clearly and rigorously. He starts by defining 

the notion of a metric Boolean Algebra. To do this he calls the unit element of a Boolean 

algebra u and the null element n, a metric Boolean algebra can then be defined as follows: 

Definition.A metric Boolean Algebra is defined as a Boolean algebra together with a real-

valued function m of the elements of the algebra, where m(x), called the measure of the 

element x, is defined for every x in the algebra and satisfies the postulates: 

1.       implies                 , 
2.                   . 

The element complementary to x will be designated by x' and the relation of 

inclusion     will be understood in the sense of      . If     then denotes the 

symmetric difference, a distance  can be introduced between elements of the metric 

Boolean algebra (justifying thus the name): (x,y) = m(   ). 

This distance turns the algebra into a metric space, and if the metric space is 

complete the metric Boolean algebra will also be said to be complete. Kolmogorov then 

justifies why this is important: 

 

“The general definition of metric Boolean algebra which we have now 

seen is a natural generalization of properties of a series of classical 

mathematical entities which have long been known. So, e.g., when the 

formal definitions are properly chosen, the regions of an arbitrary 
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bounded domain of space, with their volumes designated as their 

measures, 

form a metric Boolean algebra. Another important example of metric 

Boolean algebras is provided by the systems of events in an arbitrary 

problem in probability theory, with their respective probabilities 

designated as measures.”(Kolmogorov, 1948, p. 59) 

 

Kolmogorov then states that the classical notions of volume of a figure and 

probability of an event are most commonly conceived as measures of sets. Due to this fact 

the theory of metric Boolean algebras and the general theory of measure can be considered 

as “parallel and concurrent formal, logical treatments of their concrete subject-matter, 

which is the same for both theories.”(Kolmogorov, 1948, p. 62) 

To characterise this formal and logical correlation Kolmogorov uses the notion of 

isomorphism between metric Boolean algebras: 

Definition.Two metric Boolean algebras are isomorphic when there exists a biunique 

correspondence x* =  (x), x =    (x*) between the sets of their elements for which we have 

identically:                                                   . 
Kolmogorov considers measures m(x) which are real-valued, non-negative, 

completely additive functions defined on a Borel field Fm of subsets of a certain 

fundamental set Um which itself belongs to  Fm. He then assigns the sets belonging to  Fm to 

disjoint classes or metric types: Two sets X and Y belong to the same metric type when 

m(   ) = 0. 

As all sets of the same metric type have the same measure it is natural to regard it as 

the measure of the metric type itself, and then the following results can be proved: 

Proposition 1.The metric types of any measure form a complete metric Boolean algebra. 

Proposition 2. Every complete metric Boolean algebra is isomorphic to the algebra of 

metric types of some measure. 

Two measures will be called structurally isomorphic when the algebras of their 

metric types are isomorphic. Now, given propositions 1 and 2 Kolmogorov announces that 

the theory of complete metric Boolean algebras is equivalent to the theory of measures, 

considered up to a structural isomorphism. And this is important for the theory  of 

probability as the complete algebra of events can always be transformed isomorphically 

into the algebra of the metric types of a suitably constructed measures. 

The last section of this paper by Kolmogorov is then dedicated to the classification 

of complete metric Boolean algebras. 

 

“The passage from the theory of measures to complete metric Boolean 

algebras has a highly significant consequence: The complete metric 

Boolean algebras can be (up to an isomorphism) perfectly surveyed and 

classified.”(Kolmogorov, 1948, p. 64) 
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To present this classification, Kolmogorov introduces the following concepts: Let 

the set S(x) designate the set of all elements    , then the weight (x) of x will be the 

smallest of the powers of sets dense in S(x) and the element x will be called homogeneous 

when the power of every element     in S(x) is equal to that of the element x. 

It can be shown that (x) in a complete metric Boolean algebra is always equal to 1, 

2 or an infinite power; and in the case that it is 2, x will be called an atom. 

The classification is then presented as the following theorem due Dorothy Maharam 

published in (Maharam, 1942): The unit element u of any complete metric Boolean algebra 

can be represented in the form                 with r = 1, 2,…; s = 1, 2, ... Where ar 

are atoms and the cs are homogeneous elements of infinite weight, and these elements 

satisfy two further conditions: 

1.               
2.               

The unions in the right-hand side of the decomposition can be finite or denumerable. 

The decomposition satisfying (1) and (2) is unique (up to a permutation of atoms of equal 

measure). In order that two complete metric Boolean algebras be isomorphic, it is necessary 

and sufficient that the sequences (of real and transfinite numbers) 

  

             

             

             

  

coincide for the one algebra and for the other. 

 

A final remark. 

 

We would like to conclude our present discussion by noting that \linebreak 

Carathéodory's algebraization of the integral did not immediately lead to an algebraic 

integration theory. In fact, it was Irving Segal in (Segal, 1965) who introduced the term and 

actually felt a need to explain it: 

 

“It was the development of a variety of new theories, rather than the 

desire to embellish old ones, which primarily has led to the development 

of a complex of results, methods, and ideas here somewhat loosely 

referred to as `algebraic integration theory'. The introduction of a new 

term such as this requires some explanation and justification, in the light 

of the rapidly increasing burden which mathematicians must bear 

[...] This might be called invariant integration theory, but this term might 

well suggest a subject quite different from this one, namely that of 

invariant integrals. Since the setting of the theory is naturally algebraic, 

in its concern with features independent of isomorphisms, the term 

algebraic integration theory is reasonable -although the subject is 

distinctly more distant from conventional algebra than is algebraic 

topology. Such a theory is necessarily abstract, but the term `abstract 

integration theory' has already a different meaning, signifying usually the 
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theory in which integrals are considered not necessarily over subsets of 

euclidean space, but over relatively general spaces, and is a more limited 

and quite distinct notion from that of the theory considered here, whose 

distinctive description as algebraic seems therefore practical.” 
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