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Abstract 

 

While the idea of the naturalness of the positive integers is ancient, the idea of the naturals 

as the foundation of our number system is not. This latter idea, along with other factors, 

eventually led to the abstract definitions of natural numbers at the end of the 19th century. 

But, what led to such an idea that was already present among Germanic mathematicians in 

the first third of the 19th century? This article examines the tensions around the notion of 

number among the Germanic mathematicians of the second half of the 18th century with the 

aim of contributing to a better understanding of some of the factors that explain the 

emergence of such a different approach to naturals. 
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[A NOÇÃO DE NÚMEROS NATURAIS ENTRE MATEMÁTICOS GERMANICOS 

DURANTE A SEGUNDA METADE DO SÉCULO XVIII] 

 

 

Resumo 

 

Enquanto a idéia da naturalidade dos inteiros positivos é antiga, a idéia dos naturais como 

base do nosso sistema numérico não é antiga. Esta última ideia, juntamente com outros 

fatores, eventualmente levou às definições abstratas dos números naturais no final do século 

XIX. Mas, o que levou a essa idéia que já estava presente entre os matemáticos germânicos 

no primeiro terço do século XIX? Este artigo examina as tensões em torno da noção de 

número entre os matemáticos germânicos da segunda metade do século XVIII com o 

objetivo de contribuir para uma melhor compreensão de alguns dos fatores que explicam o 

surgimento dessa abordagem diferente para os naturais. 
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1. Introduction 

 

Within the arithmetic framework set by Abraham Gotthelf Kästner in his popular 

Anfangsgründe der Arithmetik, Geometrie, ebenen und sphärischen Trigonometrie und 

Perspectiv, the denomination ‘natürliche Zahlen’ was only used when he explained what a 

logarithm is (Kästner, 1758, p. 144). By contrast, in his posthumously published 

Paradoxien des Unendlichen, Bernard Bolzano referred to the “set [Menge] of all numbers 

(the so-called natural or whole [...])” (Bolzano, 1851, p. 20). These passages suggest that, 

while the idea of the naturalness of the positive whole numbers is ancient, somehow the 

denomination of these numbers as ‘natural’ became usual among Germanic mathematicians 

between the mid-18th century and the mid-19th century. 

Later came the abstract definitions of natural numbers of Richard Dedekind (1888) 

and Giuseppe Peano (1889), in which ordinals were placed as the core concept, as well as 

others in which cardinals were so placed (cf. Corry, 2015, p. 249-262). But, even at that 

time, the struggles that characterized the 19th century reconception of the ideas of ‘quantity’ 

and ‘number’ (cf. Ferreirós, 2007, p. 42) persisted. This was indeed highlighted by 

Dedekind, who wrote that, from the series of natural numbers, the “gradual extension of the 

concept of number [...] [could be attained] without any intrusion of foreign ideas (such as 

measurable quantities)” (Dedekind, 1888, p. X). 

The terminology and ideas of Germanic authors such as Hankel, Kronecker, 

Grassmann, Bolzano and Gauss, all of them linked in one way or another to the 

development of the modern notion of number, account for that process of reconception. 

Examples of this are the term Zahlengrössen, used by Weierstrass and Cantor to refer to 

rational and irrational numbers (Cantor, 1872/1932, p. 97; Weierstrass, 1878/1988, p. 7, 8 

& 40), and the explicit conception of Martin Ohm of the –positive– whole numbers as the 

only numbers (Ohm, 1822, p. XI). 

However, the Germanic notion of number that preceded such development has 

hardly been studied, with the exception of (Schubring, 2005) and some other works, such as 

(Bullynck, 2006) and (Confalonieri & Kröger, 2016). In particular, what led to the approach 

to natural numbers that emerged among Germanic mathematicians by the beginning of the 

19th century? The analysis offered here on the configuration of the Germanic strict notion of 

number throughout the second half of the 18th century addresses this question and, in doing 

so, aims to contribute to the previous studies in the subject. 

While it is true that by the end of the 18th century the receptivity of mathematical 

objects nowadays considered numbers was increasing among Germanic mathematicians, so 

it is that c. 1800 the tensions around the notions of number and quantity, coupled with 

pedagogical concerns, generated new foundational reflections. Indeed, those tensions could 

explain a minor detail in the mathematical literature of the time, namely the absence of the 

appellation ‘natural numbers’ in: 

 

a) the entries ‘Ganze Zahl’ and ‘Zahl’ for the Mathematisches Lexicon of Christian 

Wolff (Wolff, 1747, p. 546 & 1429-30); 



The notion of natural numbers among Germanic mathematicians... 

 

RBHM, Vol. 19, no 37, p. 1-23, 2019 3 

b) the entry ‘Zahl’ for Johann Heinrich Zedler’s Grosses vollständiges Universal-

Lexicon (Zedler, 1749, p. 1145ff.); 

c) the entries ‘Ganz’ and ‘Zahl’ for the Mathematisches Wörterbuch initially written 

by Georg Simon Klügel (Klügel, 1805, p. 309; Klügel et al., 1831, p. 1053ff.). 

 

By contrast, it is stated both in the English Cyclopædia and the French 

Encyclopédie that the –positive– whole numbers, integers or “simply numbers” were also 

called “natural numbers” (Chambers, 1728, p. 641; Diderot, 1765, p. 202). As will be 

argued in this article, while the absence of that other denomination for positive integers in 

the aforementioned Germanic works could be related to their restricted notion of number, 

the point is that it was this notion that eventually contributed to the emergence of a different 

approach to the naturals. 

 First, a brief account of both the use of the term and the notion of natural numbers 

among authors linked to the French mathematical tradition of the second half of the 18th 

century will be presented. While the particular traits of the conception of the naturals or 

‘simply numbers’ within the Germanic mathematical tradition distinguish it not only from 

the French but also, for example, from the English, here focus is placed on the former 

because of the more explicit contrast between it and the Germanic during that period. Even 

though there were also differences within the French mathematical tradition regarding the 

conception of mathematical objects that urged broader notions of number and quantity (cf. 

Schubring, 2005), as will be shown, there was a certain consensus on these notions. 

After discussing the basic notion of number among Germanic mathematicians by 

the mid-18th century, two sections are devoted to study a) the conception and treatment of 

numbers during the second half of the 18th century, and b) some incipient changes towards 

the end of that century with respect to such treatment and conception. However, it is worth 

making a couple of remarks on methodological choices in this article. 

On the one hand, it should be noted that the status of negative, rational and 

irrational numbers, as well as imaginary numbers and infinitely small quantities, posed a 

problem to 18th century mathematicians that was already “very much present in the mind of 

seventeenth-century mathematicians and philosophers” (Mancosu, 1996, p. 85ff. & 165ff.). 

Nevertheless, analysis is limited here to the first three types of those mathematical objects 

since, considered as the most immediate types of numbers introduced from the extension of 

the concept of the naturals plus zero, they are enough to account for the tensions around the 

notions of number and quantity. 

Secondly, textbooks are used as basic sources that, along with some other works, 

offer a good panorama of the mathematics of the context and time addressed here. Even 

more, for this reason attention is paid especially –though not exclusively– to the works of 

authors who, being professors at the most important Germanic universities, had a greater 

impact on the new generations of mathematicians. While the analysis of a textbook-

centered approach and the influence of those authors goes way beyond the scope of this 

article, further arguments than those sketched throughout the following sections are put 

forward in (Schubring, 2005), in favour of the former, and (Bullynck, 2013) and (Fuentes 

Guillén, 2017), in favour of the latter. 
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2. The term and the notion of natural numbers in the French mathematical tradition 

 

It is not just that the Encyclopédie accounts for an alternative denomination for ‘whole 

numbers’ among French authors of the time: it accounts for a conception that was 

widespread among authors linked in one way or another to the French mathematical 

tradition of the second half of the 18th century. As a consequence, the term ‘natural 

numbers’ and its corresponding notion can be found in all sorts of publications ranging 

from the 1750s to the end of that century and from mathematical textbooks to articles 

published in the volumes of the Societas Privata Taurinensis (later Société Royale des 

Sciences de Turin), the Académie Royale des Sciences de Paris and the Académie Royale 

des Sciences et Belles Lettres de Prusse. 

Several articles attest such a regular use, in some cases mentioning the ‘nombres 

naturels’ (Lagrange, 1759, p. 33; Saluzzo di Monesiglio, 1762, p. 122; Bernoulli, 1770, p. 

390, 403 & 407; Lagrange, 1770, p. 165-166; Laplace, 1776, p. 37), the ‘progression des 

nombres naturels’ (Euler, 1766, p. 59; Gerdil, 1774, p. 3) or the ‘suite naturelle’ or ‘suite 

des nombres naturels’ (de la Bottiere, 1763, p. 65; Rallier des Ourmes, 1763, p. 202 & 222; 

Beguelin, 1775, p. 210-214). In addition to which, in some specific cases the authors 

devoted a few lines to discuss the idea of natural numbers. For example, André-Pierre Le 

Guay de Prémontval argued that the specificity of 1 as a unit distinguished it from the rest 

of the terms in the sequence of natural numbers (1756, p. 425ff.),1 while Giacinto 

Sigismondo Gerdil argued against the consideration of that sequence as an ‘actual infinite’ 

(1762, p. 6-10 & 23-33; cf. 1774). 

On the other hand, textbooks that can be considered in that French tradition 

reaffirm the notion of the sequence 1, 2, 3, 4, 5, &𝑐 as the most natural arithmetic 

progression. Indeed, throughout much of the second half of the 18th century, the various 

expressions for natural numbers, although they were not exclusively used in a particular 

subject, were mostly associated with progressions and logarithms. That way, for example: 

 

a) Charles Étienne Louis Camus, in his Élémens d’arithmétique, referred to the 

sequence of the natural numbers when explaining the multiplication table and 

mainly when discussing their logarithms (1749, p. 54, 403 & 406), as he also did 

within the framework of plane trigonometry in his Élémens de géométrie (1750, p. 

442-443, 459 & 470), though not when studying the arithmetic progressions 

(1749, p. 365-380); 

b) Nicolas-Louis de La Caille, in his Élémens d’algèbre et de géométrie, referred to 

the sequence of natural numbers within the framework of differential calculus, 

trigonometry and geometry (1741/1756, p. 268, 223 & 212-213, respectively), but 

it was in sections on progressions, logarithms and especially sequences, where he 

not only defined it as an increasing arithmetic progression, but as increasing to 

infinity, from 0 to what can be represented by the character ∞ (1741/1756, p. 92, 

104, 116 & 118-131); 

                                                           
1 He referred to it as a ‘série’, not a ‘suite’: “Je trouve la loi de continuité démentie dès le premier pas de la 

premiere & de la plus simple de toutes les séries, celle des nombres naturels, 1, 2, 3, 4, 5, 6, &𝑐.” 
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c) Étienne Bézout, in his Élémens d’arithmétique, referred to the natural sequence of 

numbers within the section on logarithms (1764/1781, p. 217 & 221), but not in 

the one on arithmetic progressions (1764/1781, p. 204-208), and, in the volume on 

algebra applied to arithmetic and geometry, within the section on arithmetic 

progressions (1766, p. 274-279); 

d) Charles Bossut, in his Traité élémentaire d’arithmétique, referred to the natural 

numbers as the most simple of the arithmetic progressions in the section on 

logarithms and to the sequence of natural numbers in the final section on order 

changes and combinations (1772, p. 223 & 262, respectively), but not in the one 

on arithmetic progressions (1772, p. 164-173); while, in his Traité élémentaire 

d’algèbre, he constantly referred to the sequence of the natural numbers in the 

section on sequences (1773, p. 409-417); 

e) Leonhard Euler, in his posthumously published L’Arithmétique raisonnée et 

démontrée, referred to the natural progression 1, 2, 3, 4, 5, &𝑐 in the section on 

arithmetic progressions (1792, p. 405-408); while, in his Vollständige Anleitung 

zur Algebra, he referred from the very beginning to the “so-called natural 

numbers” 1, 2, 3, 4, 5, & so on to infinity (sogenannten natürlichen Zahlen) in the 

section on calculations with simple quantities (1771, p. 9, 49, 64) and in the one on 

arithmetic progressions (1771, p. 185, 192-193), but not in the one on logarithms, 

although he associated the logarithms of positive numbers to the numbers 

1, 2, 3, 4, 5, &𝑐 (1771, p. 95);2 

f) Bernoulli (Euler, 1774a, p. 48, 344 & 353) and Lagrange (Euler, 1774b, p. 449, 

484, 510 & 567), in notes and additions to the French edition of (Euler, 1771), 

constantly referred to the natural numbers. 

 

While the notion of number underlying that of the naturals, it must be said, was not 

only common in Europe, but also ancient (Elements, VII, def. 2), in the case of the French 

mathematical tradition the latter rested on particular assumptions with significant 

implications. This means, first of all, that despite their differences, all the mentioned 

authors concurred to consider ‘number’ as an assembly of several whole units that, in turn, 

was composed of parts (Camus, 1749, p. 1; LaCaille, 1741/1756, p. 3; Bossut, 1772, p. 1; 

Euler, 1792, p. 1). That way, whole and fractional numbers expressed quantities that 

consisted exclusively of whole units or exclusively or partially of aliquote parts of a unit, 

being represented in both cases by the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 plus, in the second case, 

a bar. 

The notion of natural numbers, however, required a couple of further steps treated 

within the algebraic framework and not the arithmetic one. On the one hand, it required the 

                                                           
2 Depending on the criteria used, Euler can be linked to both the French and the Germanic traditions. For example, 

one could take into account that he spent 25 years in Berlin, where he played an important role at the Prussian 
Academy of Sciences, to argue in favour of the second case scenario. However, his inclusion in this list is intended 

to stress his closer link to the former tradition within which, unlike what happened within the latter tradition, some 

of the algebraic ideas that he defended were not rejected. This approach differs from that of (Confalonieri & 
Kröger, 2015), where the notion of negative numbers is discussed in most of the French textbooks mentioned here 

and the work of Euler is listed among the Germanic examples studied. 
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introduction of negative numbers (Camus, 1749, p. 369; La Caille, 1741/1756, p. 39; 

Bézout, 1766, p. 78ff.; Bossut, 1773, p. 8; Euler, 1771, p. 8-9), since the ‘positivity’ of the 

numbers or whole numbers only arose once the distinction between positive and negative 

integers was established. On the other hand, it required a certain embracement of infinity in 

order to obtain the sequence of the most natural numbers, the whole ones, which, as Euler 

explained, grew to infinity by continuously adding 1 (Euler, 1771, p. 9-10). 

So, even if, for example, sometimes negative numbers were introduced in the 

volumes devoted to arithmetic, their treatment strictly pertained to the algebraic framework 

(cf. Confalonieri & Kröger, 2015),3 as Bézout pointed out in a footnote in his Élémens 

d’arithmétique (Bézout, 1764/1781, p. 231); and the same happened with the treatment of 

the infinite and, as shown above, with the explicit treatment of the sequence of the naturals. 

More importantly, in regard to negatives, the general idea was that they were negative 

quantities expressed by numbers, being called in some cases ‘false’ (faux, e.g. Camus, 

1749, p. 369) or ‘negated’ (verneinende, e.g. Euler, 1771, p. 9) but in many cases without 

further debate as to their status as numbers. While, in the case of the infinite, the usual trend 

was to embrace the infinite and accept both the infinitely large and small quantities, as well 

as different orders or species of them (La Caille, 1741/1756, p. 118ff.; Bossut, 1773, p. 197, 

296; Euler, 1748 & 1755).4 

As will be explained in the following sections, the attitude among Germanic 

mathematicians of the time towards the negatives and the infinite was not the same, since 

their understanding of quantities and numbers was not like that of mathematicians linked to 

the French tradition. These notions shaped their particular way of doing mathematics during 

the second half of the 18th century and, along with other factors, eventually contributed to 

the emergence of a different approach to naturals among Germanic mathematicians. 

 

3. The Germanic notion of number c. 1750 

 

By the mid-18th century, the Germanic mathematicians usually subscribed Christian 

Wolff’s general ideas on mathematics, although there were discordant voices. Like him, 

most of them conceived mathematics as the “science of the quantities, that is, all those 

things that can be enlarged or shortened” (Wolff, 1716, p. 863); a characterization that was 

indeed similar to that of their French counterparts, for whom mathematics was those 

“sciences whose object is the magnitude or quantity”, that is, “everything that is susceptible 

to increase and decrease” (La Caille, 1741/1756, p. 1).5 

                                                           
3 As Bernoulli explained in a footnote to §5, where Euler identified analysis and algebra, some authors of the time, 

such as Bézout, distinguished between the method concerned with the general rules on numbers (analysis) and the 
instrument used by such a method (algebra) (Euler, 1774a, p. 4-5; Bézout, 1766, p. iij-iv). 
4 Both in the case of negative numbers and in the case of infinitely small quantities, Schubring offers some 

examples of French authors who rejected those notions during the second half of the 18th century (cf. Schubring, 
2005). 
5 La Caille’s characterization not only emphasized the wide understanding of mathematics at the time (cf. 

Confalonieri & Kröger, 2016, p. 2 & 10-11), but also a more general understanding of ‘quantity’ when referring to 
“augmentation & diminution” (cf. Bézout, 1764/1781, p. 1; Bossut, 1772, p. 5) instead of “vergrössern oder 

verkleinern”, as Wolff did. In the corresponding dictionary entry, however, the latter defined ‘quantitas’ or 
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 Numbers, on the other hand, were defined by Wolff in a wide sense, as “that which 

is related to the unit like a straight line to another one” (Wolff, 1713, p. 21-22; 1716, p. 

945; 1742, p. 24) and, in a narrow sense, as “the aggregate of similar single things” (Wolff, 

1710, p. 34). The latter definition clearly resembles the traditional one, and thus that 

prevailing in the French tradition, within which the definition of Joachim Georg Darjes 

(professor at Jena) as “that which expreses the units in a quantity” was also usual (Darjes, 

1747, p. 73; cf. Bézout, 1764/1781, p. 2). But, regarding the first of Wolff’s definitions, it 

resembles an alternative definition that can be found, for example, in Newton’s work 

(Newton, 1707, p. 2), as well as in the work of some of Wolff’s own contemporaries, such 

as Christian Hausen (professor at Leipzig) (cf. Hausen, 1734, p. 2). 

 As Wolff stressed, his “general” –relational– definition fitted both the rational and 

irrational numbers. Therefore, he defined a ‘whole number’ as that “related to the unit as 

the whole to one part”, a rational as “that composed either of units or of aliquote parts of 

the unit” (“whose unit is commensurable”, “also called describable”), and an irrational as 

“that without a rational proportion to the unit” (“whose unit is incommensurable”, “also 

called indescribable, as well as geometrical”) (Wolff, 1713, p. 24; 1716, p. 953 & 965; 

1742, p. 27). 

Precisely, in the arithmetic framework set in his Elementa Matheseos Universæ, 

Wolff added a scholion explaining that the treatment of irrationals pertained to geometry 

and analysis (Wolff, 1713, p. 66). After all, in the strictest sense of the expression, the 

irrationals were not numbers. That way, in the geometric framework he mentioned the 

diagonal of the square as an irrational number (Wolff, 1713, p. 175), while in the analytical 

one –of finite quantities– he introduced the irrationals’ arithmetic, after stating that 

irrational quantities could be expressed by means of rationals (Wolff, 1713, p. 257; cf. 

1716, p. 179). 

Such an understanding of the irrationals as imperfect or non-finite expressions 

linked to geometry and analysis was not strange within the French (La Caille, 1741/1756, p. 

97 & 173; cf. Bézout, 1766, p. 128; Bossut, 1773, p. 269) and Germanic traditions. So, 

even though Hausen included the definition of irrational numbers among the basic ones of 

arithmetic, consisting of numbers that could not be measured by the unit or any part of the 

unit, they were strictly considered quantities not to be treated in arithmetic, as he remarked 

(Hausen, 1734, p. 3). 

In fact, similarly to Wolff’s stance, Darjes introduced the notion of ‘irrational 

quantities’ when writing about roots, where he explained that irrationals could not be 

obtained exactly and, therefore, in calculus the irrational numbers had to be transformed 

into decimals (Darjes, 1747, p. 134). After which, Darjes introduced a section on 

irrationals’ arithmetic, which, as in Wolff’s work, mainly consisted of problems and their 

solutions (Darjes, 1747, p. 148ff.). 

The attitude within the Germanic tradition towards negative numbers, nonetheless, 

was quite different from those ascribed to the French tradition. Certainly, in his 

mathematical dictionary, Wolff did not include negatives among the ‘numbers’ but only as 

                                                                                                                                                    
‘Grösse’ as that capable of “vermehren und vermindern” (increase and decrease) (Wolff, 1716, p. 1143; cf. Cantù, 

2003, p. 119-121). 
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a special kind of ‘quantities’, namely “negative, privative or less than nothing” quantities, 

and even “the lack [Mangel] of a quantity” (Wolff, 1747, p. 608 & 1429-1430; 1717, p. 

1148). But, for him, the negative quantities not only were not real (wirckliche), as were the 

positive ones, but neither could they be in ratio with the latter, being of different kinds 

(ibid., p. 608). That is why, when he introduced the notion of ‘negative quantities’ in the 

analytical framework of finite quantities set in his Elementa, he insisted on the 

impossibility of such a ratio since, he wrote, they were heterogeneous kinds of quantities 

(1713, p. 247-248; 1742, p. 299-300 & 26). 

Wolff’s conception of negative quantitites was not strange among Germanic 

mathematicians. In his Introductio to logic, for example, Darjes referred to the impossibility 

of combining heterogeneous positive and negative or privative things (Darjes, 1742, p. 15-

18). However, in a work on the first grounds of mathematics published five years later, 

Darjes introduced both positive and negative quantities at the beginning of the arithmetic 

framework, as well as operations between them, without assuming that this involved an 

ontological commitment (Darjes, 1747, p. 86ff.). And, similarly, when Hausen introduced 

negative quantities within the arithmetic framework in his Elementa Matheseos, he 

explained operations with them, denoted by letters and numbers, and wrote that they were 

of the same kind (generis) as the positive ones (Hausen, 1734, p. 13ff.; cf. Schubring, 2005, 

p. 98). 

Moreover, along with that sort of implicit criticism of Wolff's conception of 

negative quantities, there was also direct criticism of it. In a work on algebraic equations 

published in 1752, Franz Aepinus (professor at Rostock) pointed out that negative 

quantities were “true and real quantities” (Aepinus, 1752, p. 15), a subject to which he even 

devoted a paper a couple of years later. There, he was critical of the usual treatment of 

negative quantities and drew attention to the difficulties that it entailed for beginners 

(Aepinus, 1754, p. 5). Among others, he mentioned Darjes and Hausen, even pointing out 

the trading approach of the first and the latter’s example of the rise and fall of the sun 

compared to the horizon (ibid., p. 5-8; cf. Hausen, 1734, p. 13), but above all he mentioned 

Wolff, whom he criticized throughout his work. For Aepinus, one should not distinguish 

between positive and negative quantities as different kinds (species) but, in any case, as 

ways of conceiving quantities: “it is not correct to say that quantity is negative or positive, 

but it is better to say that it is conceived or viewed as positive or negative” (Aepinus, 1754, 

p. 8). 

So, despite the fact that in practice Wolff contravened his own conception of 

negative quantities, as Gert Schubring has pointed out (Schubring, 2005, p. 96-97), his 

insistence on the conceptual distinction between positive and negative quantities, as well as 

the discussion on that issue in the works of his Germanic contemporaries, reflect a 

particular debate missing at the time –at least that way– within the French tradition. As will 

be discussed in the following sections, that debate intensified among the following 

generations. 
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4. The Germanic panorama in the second half of the 18th century 

 

Throughout the second half of the 18th century, Göttingen became the most modern 

Germanic university and, along with Halle, the academic and administrative model for 

many other Germanic universities (cf. Paulsen, 1906, p. 47; Ash, 2006). At that time, 

therefore, math teachers at those institutions were highly influential among new Germanic 

mathematicians. Furthermore, even though at the Académie Royale des Sciences et Belles 

Lettres de Prusse there were “first-class mathematicians [...] and eminent mathematical 

research” was done (Knobloch, 1998, p. 1), some of their core notions and practices were 

commonly perceived as alien and were even explicitly rejected. On the contrary, it was the 

works of Johann Andreas von Segner, Wenceslaus Johann Gustav Karsten and especially 

Abraham Gotthelf Kästner, the math teachers at the aforementioned universities, that at the 

time influenced the mathematicians within the Germanic territories. 

 Undoubtedly, those three authors grew up during the heyday of Wolff’s influence, 

like the rest of the Germanic ones of the mid-18th century. But, when studying their works, 

it must be taken into account where and therefore with whom they studied. So, while 

Segner studied at Jena in the early 1730s and Kästner at Leipzig (with Hausen) in the late 

1730s, that is, at two of the most important universities in the Germanic territories at the 

time, Karsten studied temporarily at Jena (with Darjes) and mainly at Rostock (with 

Aepinus) in the early 1750s, a university that was important only in a regional context. 

 It is true that, broadly speaking, the notion of ‘numbers’ among those authors and 

their contemporaries might seem the same as that of their predecessors when reading their 

works. Firstly, the notion of ‘number’ as an aggregate remained common: Segner referred 

to it as a “concept [of the conjunction of things] that arises from the unit” or, as he wrote in 

his last work, “from the repetition [Wiederholung] of the unit” (Segner, 1747, p. 2-3; 1773, 

p. 4; cf. 1756, p. 3; see also Büttner, 1754, p. 14 & 16); Kästner called it “a multitude 

[Menge] of things of the same kind [or units]” (Kästner, 1758, p. 21-22; cf. 1800, p. 24-25); 

Karsten considered it “an aggregate [complexum] of homogeneous [things or units]” or the 

“joint counting [zusammengezählten] of several things of one kind” (Karsten, 1756, p. 12 & 

14; 1780, p. 3-4); and Johann Christian Ludwig Hellwig (teacher at Braunschweig) 

conceived it as a “character by which the units of a quantity are represented [ausgedruckt]” 

(Hellwig, 1777, p. 63). 

 Secondly, they all defined broken or rational numbers as those that arose by 

dividing the unit into equal parts and considering some of them, and irrationals as numbers 

that could not be expressed by whole units and parts of the unit. Precisely, the usual 

appellation “incommensurable” accounted for such impossibility, just as unausprechliche 

(Segner, 1747, p. 162; ineffabiles in Büttner, 1756, p. 113), stumme (Büttner, 1754, p. 98) 

or surdi (Kästner, 1758, p. 102; 1800, p. 115; surdische in Hellwig, 1777, p. 181), that is, 

‘mute’, accounted for their inexpressible character by a finite number of digits. Those 

names were used to refer to them, as Büttner wrote, since such numbers can never be 

obtained with full precision and, therefore, reason could never fully grasp them (Büttner, 

1756, p. 113). 

 As a consequence, Segner argued that the irrationals led to a different notion of 

‘number’ that, as he himself recognized, was closer to the geometric magnitudes (Segner, 
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1747, p. 163). Within the arithmetic framework, irrationals basically appeared in the 

sections on roots and geometric proportions, while they were mainly used throughout the 

geometric and algebraic or analytical frameworks. This is the case of Segner (cf. 1756 & 

1758), Büttner (cf. 1754 & 1756), Kästner (cf. 1758/1800 & 1761/1770); Karsten (1768b & 

1780) and Hellwig (cf. 1777). Thus, for example, Kästner said in the geometric section on 

the calculation of figures that the simplest case of an irrational number was √2, the 

diagonal  of a square with side = 1 (Kästner, 1758, p. 255). As he went on to explain, in 

this case geometry achieved a determination that was unattainable for arithmetic (ibid., 

255-256). 

 The physical-geometric roots of the extensions of what was considered the correct 

notion of number can indeed also be noticed, for example, in Segner’s didactics when 

introducing the broken numbers: “To make all this even clearer”, he said, one should 

consider a straight line and the equal segments into which it could be divided (Segner, 

1747, p. 4). But, above all, those roots can be noticed in the way in which some authors 

introduced the negative quantities and numbers. Segner himself, for example, in the first 

edition of his textbook introduced negative quantities and numbers (without naming them 

as such) within the framework set in the section “Grounds for the calculation with extended 

quantities”, an application of numbers for the resolution of geometric problems (Segner, 

1747, p. 646 & 656-657; cf. Schubring, 2005, p. 132-133). More clearly, when Karsten 

introduced those notions within the analytic framework, he exemplified them by the flow 

(fluat) of a point in a straight line from negative to positive values or vice versa (Karsten, 

1760, p. 272; cf. 1758, p. 22-27). 

 In addition to this, the case of the negatives reveals the Germanic conceptual 

problematic regarding the numbers. In the Germanic textbooks, more often than in French, 

the notions of negative quantities and numbers were introduced within the arithmetic 

framework, even though they were still strongly linked to the algebraic framework. Thus, 

when at the beginning of the arithmetic framework Büttner pointed to the case in which a 

larger number was subtracted from a smaller, resulting in one less than nothing or 0, he 

added that this was a kind of subtraction common in algebra (Büttner, 1754, p. 19; cf. 

Euler, 1771, p. 10). So, it was in his volume on algebra where he defined the negative 

quantities as those that did not correspond to something that actually existed but to an 

absence (Mangel), along with which he made some significant remarks: 

 

a) Negatives were “relative quantities”, since they arose from the denial of one of 

two opposite quantities; 

b) they were also called “privative”, “less than nothing”, “incongruous” (absurdas), 

“imaginary” and “false” quantities; 

c) the notion of the negatives was usually illustrated, as he said and did, by the debt; 

d) and, he included a reference to an excerpt of Aepinus’ work on the notion of 

negative quantities. (Büttner, 1756, p. 13-14) 

 

It must be stressed that, generally speaking, negative numbers were conceived as 

numerical adscriptions of negative quantities and that the common procedure among these 

authors was to treat them within the algebraic or analytical framework, despite sometimes 
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being introduced within the arithmetic one (cf. Confalonieri & Kröger, 2015). Both their 

treatment in (Segner, 1747, p. 656-657) and (Karsten, 1760, p. 271-272), for example, was 

done within an analytical framework, although in the case of the former this changed in the 

second edition. There, Segner modified the ‘arithmetic’ section on the designation of 

quantities that augmented and diminished each other, so that the signs + and − were no 

longer only linked to those processes, but also considered as signs that designated quantities 

and their numbers (Segner, 1747, p. 26-28; 1767, p. 27-28). 

Something similar to what Segner proposed by that amendment can be said about 

where and how the notion of negatives appeared in the works of Kästner and Hellwig. As 

for the latter, he based those quantities –and implicitly numbers– on the relation of 

opposition (entgegen gesetzte) and he introduced them in the ‘arithmetic’ section on the 

general properties of the formation of quantities by calculation (Hellwig, 1777, p. 69). 

While, analogously to Hellwig albeit explicitly, Kästner introduced negative numbers in the 

‘arithmetic’ section on opposite (entgegengesetzten) quantities (Kästner, 1758, p. 59ff.; 

1800, p. 71ff.). As this in turn makes clear, the notion of ‘oppositeness’ was central to the 

conception of the negatives (cf. Segner, 1767, p. 27; Büttner, 1756, p. 13; Karsten, 1760, p. 

272; 1768b, p. 64; 1786, p. 210-211; cf. Schubring, 2005, p. 132ff.). 

More importantly, such a notion accounted for the relational character of positive 

and negative quantities and, therefore, numbers. On the one hand, for them negative 

quantities –and numbers– were relative, as Büttner wrote and as Kästner emphasized when 

he explained that just as debt was the denial of assets, the latter could be considered the 

denial of debt (Kästner, 1758, p. 59-60). Which, ultimately, meant that positive and 

negative quantities and numbers, though different in a certain sense, were “homogeneous” 

(Kästner, 1739, p. [32]) or were “not of a different kind” (Segner, 1747, p. 646; 1767, p. 

639). Hence the insistence of both Kästner and Karsten to point out that the error of some 

authors, such as Wolff, had been to assume that the designation referred to the actual nature 

of the things (cf. Karsten, 1786, p. 241 & 207), that is, not to “distinguish between signs 

and things” (Kästner, 1759, p. [16-17]; cf. 1758, p. 61-62).6 

On the other hand, the mere denominations used by the Germanic authors to refer 

to negatives hinted their understanding of them. Undoubtedly, as Karsten said, some of 

those expressions should be understood as “technical terms” (Kunstwörter) and not be 

interpreted strictly (Karsten, 1786, p. 241). But, not by chance, along with ‘negative’ and 

‘privative’, the most frequently used denomination was precisely that of ‘negated’ or 

‘denied’ (verneinte) quantities and numbers (cf. Büttner, 1756, p. 13; Kästner, 1758, p. 59; 

Karsten, 1768b, p. 67; 1768a). As Karsten himself repeatedly said, although all those names 

were commonly used, negative and positive quantities should properly be called “denyingly 

[and] positively expressed” (verneint and positiv ausgedrückte), respectively (Karsten, 

1768a, p. 8; 1768b, p. 67; 1786, p. 211; cf. Schubring, 2005, p. 136-138). 

                                                           
6 This passage pertains to the “Considerations” that Kästner wrote at the beginning of a textbook on analytic 

geometry authored by Johann Michael Hube, a student of the former. The discussion of the development of that 

area during the second half of the 18th century goes beyond the scope of this article, but it should be noted that, as 
Schubring wrote, it “can indeed serve as a particularly illustrative indicator for the degree of acknowledgment and 

operativity of negative numbers” (Schubring, 2005, p. 135). 
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Just as in the case of the irrationals, therefore, the discussion about the negatives 

highlighted the idea that numbers were, strictly speaking, the –positive– whole ones, to 

which zero was added and from which the rational numbers could be formed. Karsten even 

went so far as to point out that, as a matter of fact, the distinction between whole and 

broken numbers was “not founded upon the nature of the numbers themselves” (Karsten, 

1767, p. 3). So, while the idea of naturalness underlay the notion of positive integers, within 

the arithmetic framework they were not called ‘natural numbers’ but assumed so (cf. 

Kästner, 1758, p. 144). Indeed, it was not until the fourth edition of his Anfangsgründe der 

Arithmetik when Kästner added a sort of historical note in which he traced back to Aristotle 

the idea of “the numbers of the fingers” as the “most natural” numbers, quoting a text from 

the early 17th century as a reference on the subject (Kästner, 1786a: 27);7 an addition that, 

in some way, suggests an increasing use of that denomination by the 1780s. 

Nevertheless, the treatment of negatives and irrationals by some of those Germanic 

authors shows a certain receptivity towards those ‘numbers’, while still struggling with 

them because of the prevalent notions of quantity and number. A common claim among 

them was that negatives and irrationals were “real” quantities and numbers, unlike those 

known as imaginary, which were “impossible” (cf. Segner, 1758, p. 242-243; Karsten, 

1760, p. 336). In spite of which, as mentioned before, the former could only be understood 

as numbers within a wider notion of number. In some cases, this occurred within the 

algebraic or analytic framework. Furthermore, sometimes it was pointed out that irrationals 

could be approximated by a sequence of fractions, though strictly speaking they could not 

be instantiated numerically but only geometrically; while, on the other hand, sometimes 

negatives were explicitly linked to the transition from positive to negative points on a line. 

However, just as in his last works Karsten left aside an eminently geometric 

presentation of negative numbers (cf. Karsten, 1781, p. 189ff.; 1786, p. 205-206), the works 

of other authors also make clear a certain transition that at the time was taking place. This is 

the case of, for example, the works of those authors who introduced both negative and 

irrational numbers within the arithmetic framework. One of them, Kästner, devoted the first 

chapter to whole numbers (plus basic operations with them), powers, fractions (plus basic 

operations with them) and negatives (plus their arithmetic), and treated irrationals three 

chapters later, when explaining the extraction of the square and cubic root (Kästner, 

1758/1800). Another one, Hellwig, introduced whole numbers, then negatives, then the 

basic operations with both of them, then fractions and basic operations with them and then, 

in the chapter on root extraction, he treated irrationals (Hellwig, 1777). 

 It should be noted that at the time there was no attempt to provide a more careful 

definition of positive integers than the usual definition of ‘numbers’. What at most can be 

found are characterizations or intuitive presentations of natural numbers, as in the case of 

Kästner. Thus, in a section on the sum of arithmetic series within a volume on applications 

of arithmetic, Kästner stated that the simplest example of arithmetic series was the one of 

                                                           
7 Although a copy of the third edition of 1774 has not been examined, it is highly probable that it does not contain 

this addition since an alternate edition published in Wien in 1783 does not contain it (cf. Kästner, 1783, p. 27), 

while the latter does contain other modifications with respect to the second edition. In addition to this, it should be 
noted that the text quoted by Kästner was already mentioned in his volume on the analysis of the infinite quantities 

(cf. Kästner, 1761, p. Vorrede [15]). 
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“affirmed natural whole numbers, whose first member is = 1 [and whose] difference is also 

= 1” (Kästner, 1786b, p. 41). 

Finally, although a detailed appraisal of the Germanic understanding of quantity at 

the time goes beyond the scope of this paper, it is worthwhile to draw attention to the 

widespread rejection of the notion of infinitely small quantities as variable quantities that 

could be identified with 0. Faced with the rise of Euler’s differentials (cf. Euler, 1755) 

within the French tradition, Germanic authors insisted on the fact that, if the word 

‘quantity’ was to be taken rigorously, not only no quantity could be = 0 (contradictory), but 

no 0 could be smaller than another (absurd) (cf. Segner, 1747; Karsten, 1758, 1768b, 1786; 

Kästner, 1783, 1786a; cf. Aepinus, 1752; Darjes, 1747). 

The explicit criticism of Kästner (1758, p. 17) and Karsten (1786, p. 249-250) on 

the lack of rigour and the deviation within the French mathematical tradition, therefore, 

indeed reflected the discrepancy between their respective notions of quantity and number 

(cf. Bullynck, 2006, p. 5). Nonetheless, as will be argued in the final section, by the end of 

the 18th century and the beginning of the 19th century, the tensions around those notions, 

coupled with other factors, paved the way towards a different approach to the domain of 

natural numbers among Germanic mathematicians. 

 

5. Final remarks: The Germanic notion of number c. 1800 

 

One of the best Germanic sources –if not the best– on the terminology used in mathematics 

by the beginning of the 19th century is the aforementioned mathematical dictionary of 

Klügel (former student of Kästner, prof. at Helmstedt and Halle). After his death in 1808, 

the same year that the third volume of his work was published, the project was continued to 

completion by Carl Brandan Mollweide (former student of Pfaff) and Johann August 

Grunert (former student of Pfaff and –briefly– Gauss).8 This is relevant here not only 

because the entry ‘Zahl’ was published without Klügel’s supervision, but also because it 

appeared more than two decades later, in 1831. And yet, while the division of the “whole 

science of numbers” into arithmetic and number theory accounts for a change that occurred 

during those years (Klügel et al., 1831, p. 1057), the notion of number as including whole 

and rationals makes evident the prevalence of conflicts around it. 

In Klügel’s dictionary numbers par excellence (schlechthin) were the –positive– 

whole, understood as those formed by the multiplication of the unit and ‘number’ as a 

multiplicity of similar things that could or could not be named (Klügel et al., 1831, p. 1053-

1055). As the authors went on to explain, the reverse process, that is, the division of the 

unit, led to obtaining the broken numbers. That way, the definition of number and the 

exclusion of negatives and irrationals were consistent with the stance of Klügel himself, 

both in the previous volumes of the dictionary and in other works. In his book on the 

groundings of arithmetic, for example, he defined ‘number’ as “the idea [Vorstellung] of 

the form of a multiplicity of similar things” (Klügel, 1792, p. 7) and he only introduced the 

                                                           
8 The advisor of Gauss at Helmstedt was precisely Johann Friedrich Pfaff (former student of Kästner), who in his 

inaugural dissertation clearly asserted that, in a way, it was “permissible to equal to 0 the differentials of variable 
quantities” (Pfaff, 1788, p. 5), openly rejecting in that way the opinion firmly defended by many of his 

predecessors (cf. Dhombres, 1995). 
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irrational and negative numbers to say that: a) the quantity of the former could only be 

accurately represented in geometry and b) the members (numbers) of the arithmetic 

progression, if read backwards, would lead to “negated” members (Klügel, 1792, p. 31 & 

50-51). While, in his dictionary, he introduced negative numbers when talking about 

opposite quantities and defined irrational quantities as a “proportional concept” for 

quantities (Klügel, 1805, p. 104ff. & 949, respectively).9 

Perhaps of those notions discussed here, that on whose status there was a broader 

consensus was that of what we nowadays call ‘imaginary numbers’: imaginaries were not 

numbers, despite being called so sometimes, and indeed they were not even quantities but, 

in any case, “impossible quantities” that were “only useful on behalf of analytical calculus” 

(Langsdorf, 1802, p. 83; Raupach, 1815, p. 75; Schultz, 1788, p. 234; cf. Zimmermann, 

1805, p. 292). Indeed, in his dissertation of 1799, Gauss was critical both with that 

terminology and with the conception underlying it (cf. Gauss, 1799, p. 5-7). But even a few 

decades later there was still some reluctance towards imaginary quantities and, for example, 

Bernard Bolzano (1810, p. 30-31; 1816, p. 144), Augustin-Louis Cauchy (1821, p. iij-iv & 

173ff.) and Josef Ladislav Jandera (1830, p. XXIX; professor at Praha) preferred to refer to 

them as “expressions” (imaginärer Ausdrücke and expressions imaginaires) instead of 

quantities. 

Irrational numbers, on the other hand, continued to be commonly used but at the 

same time their status still posed some conceptual problems for several authors within the 

Germanic tradition. The impossibility to express them numerically –with absolute 

precision– led some authors to explicitly state that irrationals were not numbers but, simply, 

quantities. Because of that, for example, Immanuel Kant defended in a letter of 1790 that 

√2 was not a number (cf. van Atten, 2012), while Bernhard Friedrich Thibaut (former 

student of Kästner, professor at Göttingen) said that expressions such as √7 should not be 

called numbers (Thibaut, 1809b, p. 84). 

Nevertheless, since irrationals could be approximated by fractions, it was 

increasingly frequent to find authors who emphasized that, since what applied for the 

rationals and ultimately for the whole numbers could in turn be applied to the irrationals, 

the status of these latter as ‘numbers’ was thus guaranteed (Langsdorf, 1802, p. 103; 

Zimmermann, 1805, p. 217). Even more, in the case of the Anfangsgründe der reinen 

Mathesis of Johann Friedrich Schultz (professor at Königsberg), a section on irrational 

numbers was included just after the ones on broken numbers and decimal fractions, in 

contrast to the usual practice (cf. Schultz, 1790, p. 105). There he defined irrationals as a 

sort of infinite fractions and, after that section (the last on types of numbers), he went on to 

explain in another section the “numbers in general”, that is, the whole, rational and 

irrational numbers (Schultz, 1790, p. 110). 

                                                           
9 Klügel wrote a couple of essays on the opposite quantities, which were published in 1795 and were praised 
among his contemporaries. Gert Schubring suggests that “Klügel’s concept was contradictory” (Schubring, 2005, 

p. 139), since he both disqualified the English mathematicians for their –general– rejection of negative quantities 

and, at the same time, he considered that this notion was unnecessary for the rules of algebra’s common operations 
(Klügel, 1795a, p. 316; 1795b, p. 479). From our perspective, Klügel’s approach indeed denotes the prevailing 

geometric roots of the notions of quantity and number and the tensions around them. 
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Coupled with that, the treatment of negatives in the work of Schultz makes patent 

other ongoing important changes. He was both careful with the name, referring to “opposite 

quantities and numbers”, and with the placement of the corresponding section, namely, 

after the above mentioned section on numbers in general (cf. Schultz, 1790, p. 120). In 

other words, he was not only replacing the approach of previous generations when 

explicitly referring to negative numbers within the arithmetic framework, but he was also 

pointing out the need to pay more attention to the mathematical terms and concepts used, as 

well as their concatenation. As the rest of his work shows, this was related to his 

foundational concerns, for which precisely Bolzano, in his 1810 work on the foundations of 

mathematics, mentioned him as an important predecessor in such endevour (cf. Bolzano, 

1810, p. 9). 

The fact that Schultz still warned against considering the negative quantities as 

unreal or defective (Schultz, 1790, p. 126-127) and Thibaut used the name “conflicting 

numbers” (widerstreitenden Zahlen) in his Grundriss der reinen Mathematik (Thibaut, 

1809b, p. 57), sustains Bolzano’s inclusion of that concept, along with those of “imaginary 

expressions” and “the irrationality of a quantity”, among those awaiting further clarification 

(Bolzano, 1816, p. 143-144). But, at the same time, the works of Thibaut and some other 

contemporaries of Schultz highlight the presence of those foundational and even 

pedagogical concerns. 

Thibaut criticized the foundation of arithmetical theories on geometrical 

considerations (Thibaut, 1805, p. 168) and the use of “extraneous principles” that 

contravened the purity of analysis (Thibaut, 1809a, p. IV). Around the turn of the 18th 

century and throughout the first third of the 19th century, similar claims on methodological 

and foundational issues concerning analysis and arithmetic can be found in, for example: a) 

Lagrange’s criticism of Newton’s theory of fluxions for introducing a “foreign” idea 

(motion) in a calculation of algebraic quantities (1797, p. 4); b) Bolzano’s insistence that 

geometrical concepts should not be used to prove purely arithmetical truths, since no proof 

should make use of concepts alien to it, just as no science should make use of concepts of a 

less fundamental science (1804 p. IVff.; 1810); c) Bolzano’s “purely analytic” procedures 

(1817a; 1817b, p. VI); and d) the attempt of Martin Ohm (former student of Langsdorf) “to 

give a consistent (i.e., unitary, systematic) presentation of arithmetic, algebra and analysis 

on the only basis of natural numbers” (Ferreirós, 2007, p. 120-121; cf. Ohm, 1822). 

Furthermore, Christian Gottlieb Zimmermann (teacher at the 

Friedrichswerdersche Gymnasium, in Berlin),10 among other points, modified (with 

Pestalozzi as a reference)11 the usual way of explaining the whole and the opposite 

quantities (praising the works of Karsten and Klügel) in his work on the development of 

analytical principles (Zimmermann, 1805, p. VIIff.). While Johann Andreas Christian 

Michelsen (professor at the Berlinischen und Cöllnischen Gymnasium) quoted Kant’s idea 

of the construction of concepts to account for the innovations that he carried out for the 

                                                           
10 Zimmermann was a mathematician that attended the university of Königsberg, where, according to the 

Allgemeine Deutsche Biographie entry, he became close to Schultz and Kant (Cantor, 1900, p. 251). 
11 A careful analysis of the contributions of Pestalozzi to the “pedagogic techniques of transmission” and the 

reordering of elementary reckoning textbooks can be found in (Bullynck, 2008). 
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sake of firmly established and well explained concepts, as those of quantity and variation 

(Michelsen, 1789, p. VIIff.). 

In the Germanic mathematical context of the first decades of the 19th century, 

Ohm’s “program of basing all of mathematics upon the notion of natural number” (the title 

of his 1822 book was Versuch eines vollkommen consequenten Systems der Mathematik), 

even though he did not use the expression ‘natural numbers’ and he “accepted [them] as 

given objects with their characteristic properties” (Ferreirós, 2007, p. 12), was highly 

innovative. By contrast, the notion of positive whole numbers that prevailed within the 

Germanic mathematical tradition during the second half of the 18th century was highly 

traditional. And yet, as shown, the conceptual tensions around the notion of number got 

intertwined with pedagogical concerns and new foundational reflections in the late 18th 

century and the beginning of the 19th century. This precisely paved the way to the 

forthcoming different approach to natural numbers, to which other factors, such as the 

consolidation of some educational reforms and the implementation of new ones (cf. Ash, 

2006; Fuentes Guillén, 2017), also contributed. 
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BERNARD, Bolzano. 1810. Beyträge zu einer begründeteren Darstellung der Mathematik. 

Erste Lieferung. Prague: Caspar Widtmann. 

BERNARD, Bolzano. 1816. Der binomische Lehrsatz, und aus Folgerung aus ihm der 

polynomische, und die Reihen, die zur Berechnung des Logarithmen und 
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LAGRANGE, Joseph-Louis. 1797. Théorie des fonctions analytiques, contenant les 
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quantités finies. Prairial an V. Paris: Imprimerie de la République. 

LAGRANGE, Joseph-Louis. 1770. Additions sur la résolution des équations numériques, 

imprimé dans le Volume de 1767. In: Histoire de l’Académie Royale des Sciences 

et Belles-Lettres. Année MDCCLXVIII. Berlin: Haude et Spener. 111-180. 

VON LANGSDORF, Karl. 1802. Anfangsgründe der reinen Elementar- und höheren 
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