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Abstract 

 

We posit that, for many ancient thinkers, mathematical allegory was a fundamental 

theoretical construct in their understanding of the universe. The procedure is to establish a 

noteworthy mathematical structure which suggests certain physical or social applications 

(interpretations). We illustrate the method in regard to the Oedipus myth. Thus, we use the 

practice of measuring with stretched ropes to elaborate, via Pythagorean number theory, an 

alternative classification of triangles to that of Euclid and show how to make a perspicuous 

geometric representation of triangles so classified. The representation obtained is seen to be 

a primitive astral map, whose salient features, especially when considered in light of the 

macrocosm/microcosm analogy, suggest to the poetic imagination details of the Oedipus 

myth. Oedipus’ destiny would have been determined by casting lots on the astral map. 

Apparently his lot fell where “three roads meet,” which can then be interpreted as showing 

that the Oedipus myth (as well as Sophocles play Oedipus Rex) was understood to be a 

version of the Green Child myth. 

 

Keywords: Ancient Philosophy, Ancient Mathematics, Mathematical Allegory, Oedipus, 

pre-astrology. 

 

 

[O MITO DE ÉDIPO COMO UMA ALEGORIA MATEMÁTICA] 

 

 

Resumo 

 

Sugerimos que muitos pensadores antigos adotaram a alegoria matemática como peça 

teórica fundamental para entender o universo. O procedimento consiste em estabelecer uma 
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estrutura matemática notável que poderá sugerir aplicações físicas ou sociais. Ilustramos o 

procedimento em relação ao mito de Édipo. Assim, usamos a prática de medir com cordões 

esticados, em conjunção com a aritmética pitagórica, para elaborar uma classificação de 

triângulos e mostramos como a classificação pode ser representada geometricamente de 

forma perspícua. A referida representação é vista como um mapa astral primitivo que, 

quando considerado à luz da analogia do microcosmo/macrocosmo, sugere à imaginação 

poética os detalhes do mito de Édipo. O destino de Édipo teria sido determinado por lançar 

sortes sobre o mapa astral. A sorte de Édipo, aparentemente, caíu sobre o “cruzamento de 

três estradas”, o que pode ser interpretado como evidência de que o referido mito (bem 

como a peça Édipo Rei de Sófocles) foi concebido como uma versão do mito do Homem 

Verde. 

 

Palavras-chave: Filosofia Antiga, Matemática Antiga; Alegoria Matemática, Édipo, Pré-

Astrologia. 

 

 

Introduction 
 

The Myth of Oedipus is well known and can be quickly told in outline. It is 

prophesized to King Laius and Queen Jocasta of Thebes that their newly born son will kill 

Laius and marry Jocasta. Hoping to sidestep fate, Laius orders baby Oedipus, whose name 

means “swollen foot,” to be exposed to the elements, but Jocasta arranges it so that the 

infant is spirited away to Corinth, where it grows into a promising and beloved prince. 

Rumors reach him about his illegitimacy, however, and thus he goes to Delphi to determine 

the truth of the matter. The prophet, however, only tells him that he will murder his father 

and marry his mother. Still taking his adopted parents for his birth parents and hoping to 

sidestep fate, he avoids returning to Corinth and instead sets out for Thebes. On the way, at 

a place where three roads meet, he becomes involved in an altercation with a stranger, who 

in reality is Laius traveling incognito, and ends up slaying him. A bit further on, he meets 

with a sphinx that is tormenting the Thebans with draught and plague. She will only let him 

pass if he can solve the following riddle: “What goes by fours in the morning, by twos at 

midday and by threes in the evening?” Oedipus solves the riddle: man crawls on his hands 

and knees as an infant, walks on two legs as an adult, and hobbles about with the help of a 

cane in old age. In consequence, the sphinx dashes herself to the ground, Thebes is freed 

and Oedipus marries Jocasta and becomes king. Eventually, however, the truth comes out. 

Thereupon Jocasta hangs herself, and Oedipus blinds himself and becomes a wandering 

beggar, dependent on his daughter Antigone. After his demise, Oedipus’ tomb becomes a 

sacred place, or, in other versions, the gods find a place for Oedipus in the stars. 

It is often pointed out that the crucial action takes place at a crossroads, which is 

supposedly symbolic of fateful decisions. That this cannot be the intended interpretation of 

the myth, however, is clearly demonstrated by the fact that both Laius and Oedipus take 

conscious steps to avoid their fate, but neither can escape his destiny. What then determines 

man’s inescapable fate? We suggest herein that one’s fate is determined by the casting of 
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lots against the background of a primitive astral map, which map is itself a perspicuous 

representation of a certain classification of triangles. We suggest further that the 

mathematical structure of the procedure furnishes the salient features for an artistic 

representation of the underlying motif of Oedipus as the Green Child (the god of vegetation 

whose death and rebirth constitute the cycle of organic life). We use the term mathematical 

allegory to refer to the process whereby interesting mathematical structures are regarded as 

touchstones for understanding the world and our place in it. We will elaborate on this 

concept of mathematical allegory in Part 1 of the present paper. In Part 2 we will present 

the specific mathematical structure that may be relevant to the Oedipus myth and, in Part 3, 

apply that structure to the myth in question. 

 

Part 1: Mathematical Allegory 

 

 Many ancient thinkers, amongst whom the best known are perhaps the 

Pythagoreans, considered mathematics to be fundamental for our understanding of the 

universe. Due to the sacred nature of this knowledge, however, it was never formally 

expounded in systematic treatises, but only alluded to by writers who assumed that their 

allusions would be clue enough for the initiated. Thus, the modern interpreter is forced into 

trying to recreate this mathematics-based philosophy as best as can be done. On the one 

hand, the recreation is facilitated by the aforementioned allusions, by the stated goals of the 

theory under investigation and by the fact that the mathematics is rational and can thus be 

investigated in a rational manner. On the other hand, the recreation is inhibited by the fact 

that the historical record is littered with “red herrings,” such as facile number mysticisms 

that obviously have little explanatory power, and by the fact that the link between the 

mathematics and the philosophical doctrine are somewhat arbitrary. 

 We would like to suggest, however, that a promising tool for investigating this 

kind of ancient thought is that of mathematical allegory. According to our view, one starts 

with an a priori mathematical structure, which is interesting in its own right, generally 

because it treats of some mathematical concept in a complete and/or striking way. The 

structure is then interpreted according to (ad hoc) heuristic principles which bridge the 

mathematical structure and its worldly applications. The most compelling of the 

mathematical allegories that we have unearthed either contain generative principles or 

establish a stylized model for astronomical/astrological lore. We will briefly describe an 

example of each, both taken from Plato’s Republic. 

 

The Divided Line 

 

 In Book VII of the Republic, Plato sets out the Myth of the Cave and, right after 

recounting it, discusses it in terms of the Divided Line. If we inquire into the relative 

lengths of its segments and impose the (Pythagorean) condition that they be given by 

positive whole numbers, it is not too difficult (for details, see Erickson and Fossa, 2006) to 

arrive at the following general form of the Divided Line:                , where k, a 

and b are positive whole numbers and a and b are coprime. The middle terms are equal, 
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each being the geometric mean of the extremes. Further, the length of the whole Line is 

       . 

When k = 1, we say that the Line is primitive. Given that a and b are coprime, 

there is only one primitive Line in which the extremes are equal, to wit, the Line        , 

which may be called the Monadic Line. Now all primitive Lines can be generated from the 

Monadic Line by using the following rule: 

 

               
                      

                      
 . 

 

Since a and b are coprime, a+b and a will be coprime, as will a+b and b. Thus, 

both results are indeed primitive Divided Lines. Figure 1 shows the first few stages in the 

generation of all primitive Divided Lines. 

 

 
Figure 1. Generation of Divided Lines. 

 

 The mathematical structure pictured in Figure 1 is interesting in that all and only 

primitive Divided Lines are obtained. Each primitive Line generates an infinite family of 

non-primitive Lines by multiplying successively by 2, 3, 4, 5, … The mathematical allegory 

that results from this structure is Plato’s philosophy, as is explained in Erickson and Fossa 

(2006). We forego further explanations here, since our purpose was merely to illustrate how 

the generative principles work. 

 

The Nuptial Number 

 

 We will now give an example of the second type of mathematical allegory, a 

stylized model for astronomical/astrological lore. In Book VIII of the Republic, Plato gives 

an enigmatic description of what would come to be known as the Nuptial Number, but 

which Plato himself refers to as the geometrical number. By piecing together various hints 
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from ancient authors, Fossa and Erickson (1994)
1
 reconstructed this number, which is 

shown in Figure 2. As a mathematical structure it is interesting in that all its component 

(triangular) parts are similar. This is so because ABC is a right triangle, while        is the 

altitude on the hypotenuse. Further,        is the altitude on the hypotenuse of ACD, while 

       is the altitude on the hypotenuse of BCD. In fact, as is easily verified, all the triangles 

in the Figure are similar to the (3, 4, 5) triangle, which is the smallest right triangle having 

whole number sides.
2
 

 
Figure 2. The Nuptial Number. 

 

 The most important heuristic principles that connect this interesting mathematical 

structure with the problem that it is designed to solve (the determination of which partners 

should be allowed to procreate in order to maintain the correct proportion among the three 

social classes) are as follows: 

1. Each divided right triangle represents a newborn child. 

2. The child’s father is represented by the larger component and its mother by the 

smaller component. 

3. The numbers represent days. 

4. A year consists of 360 days. 

5. The perimeters of components represent ages at time of procreation. 

6. The perimeter of compound triangle represents social class. 

The whole triangle, ABC, for example, has a perimeter of 50 years and therefore 

(due to a direct statement of Plato in the Republic) represents the ruling class. Other 

statements of Plato imply that a man reaches his full physical prowess at age 40, while a 

woman does so at age 30. These are exactly the perimeters of, respectively, the father 

component, ACD, and the mother component, BCD. Both of these latter triangles can be 

                                                           
1 See also Fossa and Erickson (2001). 
2 Although we will not make use of the fact herein, it is interesting to observe that, because the altitude is the 
geometric mean of the parts into which it divides the hypotenuse, each altitude defines a Divided Line. They are 

16k/12k/12k/9k, where k is, respectively 5×60, 4×60 and 3×60; also 60 = 3×4×5. 
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analyzed in the same way, which shows that procreation at an earlier age changes the social 

class of the child procreated. 

 That there is still more behind Figure 2, however, is only revealed after a passage 

from the Timaeus is analyzed, resulting in the identification of some of the numbers in the 

Figure with the Material Elements. Specifically, 3840, 2160, 2880 and 1620 represent, 

respectively, Fire, Water, Air and Earth. But the only place that these elements are listed in 

this order (with Air and Water permuted) is in traditional astrology. This indicates that 

these numbers are connected with the Fire signs, Water signs, Air signs and Earth signs of 

the zodiac and, hence, Figure 2 is a stylized astral map and astrological considerations were 

to be included in Plato’s proposed direction of the Republic’s population planning policy. 

Again, we abstain from supplying full details (for which the cited publications may be 

referred to), since we only desire to provide an example of how an interesting mathematical 

structure may be considered as a stylized model for astrological lore. 

 This second type of mathematical allegory – that in which the generative aspect is 

largely (but not completely) absent – is in many respects simpler and, thus, probably older. 

Indeed, it will be this type of allegory that will be of importance in the Oedipus Myth. In 

Part 2, to which we now turn, we present the mathematical structure that we propose as the 

basis for this myth. 

 

Part 2: A Theory of Triangles 

 

 In the present part of this paper, we will present an alternative to Euclid’s 

classification of triangles. We will thereupon exhibit a perspicacious way of presenting the 

Universe of Triangles, in which all
3
 triangles, up to similarity, are represented in a unique 

manner. We start by presenting the motivation for devising the alternative classification. 

 

Motivation 

 

 At the beginning of Book I of his The Elements, Euclid gives a series of 

definitions, which, especially when taken together with the subsequent investigations in his 

work, seem to demarcate clearly the notion of ‘triangle’ and the classification of its 

principle subtypes. Stated in modern terms, this notion is that of a plane figure consisting of 

three line segments inclosing a finite space. The subdivisions are made with regard to the 

relative size of the sides and of the angles, resulting in, as Proclus remarked
4
 seven distinct 

types of triangles, to wit: (1) equilateral, (2) acute isosceles, (3) right isosceles, (4) obtuse 

isosceles, (5) acute scalene, (6) right scalene and (7) obtuse scalene. 

 Accepting the account proffered in the foregoing paragraph as unproblematic, 

however, tends to close off fruitful historical investigations regarding (i) the subtleties and 

ambiguities in Euclid’s definitions, (ii) the differing points of view of some of his 

contemporaries, with which he had to contend, and (iii) possible prior accounts, which may 

be quite different from that of Euclid. For purposes of illustration, (i) and (ii) may be taken 

                                                           
3 All, that is, except for those having infinite sides. See below. 
4 See Heath’s commentary in Euclid (1956). 
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together. Thus, Euclid defines trilateral (rectilineal) figures as those contained by three 

lines; from this, the seven aforementioned kinds of triangles fall out in the manner already 

explained (Def. 19, 20 and 21). Nevertheless, he does not identify trilateral figures and 

triangles, for, according to some of his contemporaries
5
, some triangles, such as that 

pictured in Figure 3, have four sides. 

 

 
Figure 3. A “barb triangle”. 

 

 Again, we should take care to understand Euclid’s concept of angle, for our 

common notion of angle is, for Euclid, but one species of angle. This kind of angle, formed 

by the inclination of one straight line to another, is called (Def. 9) a “rectilineal angle”. But 

Euclid also allows for other kinds of angles (Def. 8); these are formed by the inclination, 

one to another, of two lines, at least one of which is not straight (see Figure 4) and are 

called “horn angles” or “horn-like angles”. They occasioned considerable controversy in 

Euclid’s time. 

 

 
Figure 4. Horn angles. 

 

 For our purposes, however, items (i) and (ii) are not as relevant as (iii). In this 

regard, it is interesting to observe how Euclid’s definition of ‘angle’ differs from earlier 

definitions. According to Heath’s commentary in Euclid (1956, v. I, p. 176, emphasis in the 

original), 

 

I think all our evidence suggests that Euclid’s definition of an angle as inclination (κλίσις) 

was a new departure. The word does not occur in Aristotle; and we should gather from him 

that the idea generally associated with an angle in his time was rather deflection or breaking 

of lines (κλάσις): cf. his common use of (κεκλάσθαι) and other parts of the verb ( ), 

and also his reference to one bent line forming an angle (

, Metaph. 1016 a 13). 

                                                           
5 Once again, see Heath’s commentary in Euclid (1956). 
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Aristotle, in the passage cited by Heath, while discussing the “oneness” of things, 

refers to the shin and the thigh, which naturally leads us to think of the leg, when bent at the 

knee, as forming an angle and, indeed, in the very next sentence he says that the bent line 

forms an angle. The mathematical angle arising from a bent line, however, is unlikely to 

have originated in human locomotion, but rather in the practice of measuring (for purposes 

related to surveying and architecture) by means of stretched cords or ropes. 

 The use of cords by the ancient Egyptians for this purpose is attested by the 

Church Father Clement of Alexandria (c. 150 - c. 215), who, in his Stromata, cites a letter 

of Democritus (c. 460 - c. 370 BC) in which he boasts of being a better mathematician than 

the ancient Egyptian harpedonaptae (“rope-stretchers”). The reception of this account 

makes it seem as if rope-stretching were a practice peculiar to the Egyptians. That this was 

not the case is shown, for example, by Dauben (1992), where it is shown that the practice 

was a common one in the ancient world, including ancient Greece. Indeed the setting out of 

architectural blueprints through the use of stretched cords was still used by, e.g. Palladio 

(1516-1580). 

 It is clearly the case that stretched cords satisfy the restrictions of Euclid’s 

postulates, according to which geometrical constructions are to consist of line segments and 

circular arcs. In paper and pencil constructions, these restrictions are embodied by the use 

of the straightedge (unmarked ruler) and the (collapsible) compass. In larger scale 

constructions, such as those employed in architecture, a straight line
6
 connecting two points 

is given by a cord stretched tightly between those two points. Likewise, a circular arc is 

given by swinging one of the cord’s endpoints about the other while maintaining the cord 

tightly stretched. It is, therefore, entirely possible that the restrictions on geometric 

constructions arose from the practice of using stretched ropes in the construction of 

(sacred?) edifices.
7
 

 However this may be, we will now limit ourselves to investigating rectilinear 

constructions, that is boxes (rectangular parallelepipeds), by stretching ropes. The limitation 

corresponds to the Pythagorean subdivisions of solid numbers – those that have three 

factors (be these factors prime or composite) –, which may be set out in the following 

manner: 

Cube – three equal factors 

Brick – two equal factors and a smaller one 

Plinth – two equal factors and a bigger one 

Altar – three unequal factors. 

In Pythagorean number theory, these subdivisions are collectively exhaustive, but 

not, due to the presence of composite factors, mutually exclusive. Nevertheless, it is patent 

that, in the geometrical case, the subdivisions are both collectively exhaustive and mutually 

exclusive. That is, every rectangular parallelepiped falls under one, and only one, of these 

                                                           
6 That is, in modern terms, a line segment. 
7 This seems to have been first noticed by Seidenberg (1959). Fossa (to appear) interprets Euclidean geometry as a 

theorization of surveying (the basic activity of Plato’s Demiurge in the Timaeus. 
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headings, according to whether it has three equal sides, two equal sides with the third side 

either longer or shorter than these, or three unequal sides. 

 In consequence of the stated limitation, we can forget about horn angles. Further, 

since, as we will see presently, triangles will be formed from boxes, we may also disregard 

barb triangles. 

 

Boxes and Triangles 

 

 Since a box is completely determined by its length, width and height, it will be 

delineated by stretching a cord along these sides in an appropriate fashion. Specifically, the 

cord is first stretched from point A to point B, whereupon a right angle
8
 is made as the cord 

is continued from point B to point C; finally, another right angle is made, this time to the 

plane containing A, B and C, as the cord is stretched from point C to point D. The result is 

that        is the length,        the width and        the height of the box. 

 Once we have constructed a box in this fashion, we may disregard the construction 

in order to concentrate on the cord that generated the given box. As a physical entity the 

cord can be manipulated in space in various ways. In particular, we may allow the section 

representing the height of the box to rotate onto the plane of the box’s base and bring the 

two endpoints (A and D) together, without, however, changing the lengths of the three 

sections of the cord (      ,        and       ). Whenever this can be done (see below), we will 

obtain a triangle which corresponds to the box in the sense that it is generated by the same 

cord layout as that which generated the box. Further, distinct kinds of boxes will 

correspond to distinct kinds of triangles: the Cube corresponds to the equilateral triangle 

(Figure 5), the Brick to the isosceles triangle with a short base (Figure 6), the Plinth to the 

isosceles triangle with a large base (Figure 7) and the Altar to the scalene triangle (Figure 

8). 

 

 
Figure 5. The Cube. 

 

                                                           
8 Recall that by “box” we mean rectangular parallelepiped. 
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Figure 6. The Brick. 

 

 
Figure 7. The Plinth. 

 

 
Figure 8. The Altar. 

 

 Since the traditional terminology does not distinguish between triangles 

corresponding to the Brick and those corresponding to the Plinth, we will apply the names 

of the boxes to the types of triangles corresponding to them. Thus, we have found four 

distinct types of triangles: cubes, bricks, plinths and altars. 

 An interesting theoretical question about two or three dimensional figures is that of 

comparing their relative sizes. Since each kind may come in a variety of sizes, something 

must be held constant to effectuate the comparison. For regular figures, we may require that 

the side be equal to a unit of measure. Alternatively, for two dimensional figures, we may 

inscribe each in a unit circle and, for three dimensional figures, in a unit sphere. The 

process of generating boxes and triangles also affords us another way of comparing their 

relative sizes. We may hold the entire length of the cord (      ) constant. When we do so, we 
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find that the Cube (be it a box or a triangle) is unique, since we must have               

       
 

 
      . The other three boxes (triangles) come in an infinite number of varieties. 

 It may also be the case, however, that for a given box, no corresponding triangle is 

generated. This happens whenever two of the sections of the cord are so small relative to 

the third side that we cannot make the endpoints meet. In fact, there are three cases, 

illustrated in Figure 9. In part (i.) of this figure,                     , which is precisely the case 

in which we cannot make A and D come together and, thus, no triangle is formed. In Figure 

9, part (ii),                     . From the Euclidean viewpoint, or that of modern mathematics, 

the result just appears to be a line segment, not a triangle. From the point of view of cord 

constructions, however, we clearly see three distinct sections of the cord, corresponding to 

the three sides of the triangle, as well as three distinct points, corresponding to the triangle’s 

three vertices. We will call triangles of this kind “Collapsed Triangles”. Finally, in part (iii.) 

of Figure 9,                      and we obtain the usual Euclidean type of triangle. 

 

 
Figure 9. Criterion for being a triangle. 

 

 

Triangular Boxes 

 

 The results obtained in the preceding paragraph indicate that we can make a finer 

analysis of boxes (and, thereby, of triangles). From the universe of all possible boxes 

(rectangular parallelepipeds), we designate as “Triangular Boxes” those that correspond to 

some triangle in the sense already specified (with regard to the generating cord). Any box 

will be given by an ordered triple (l, s, t), where l, s and t correspond to the three sections of 

the cord generating the box (and, hence, to the dimensions of the box and the sides of the 

corresponding triangle). The triple is ordered according to the magnitude of its elements, so 

that we have l  s  t. As a mnemonic device we will call l “the long side”, s “the small 

side” and t “the tiny side”. Nevertheless, it should be born in mind that, when equality 

obtains, the long side, for example, will be equal to the small side. Given these conventions, 

the criterion for a box to be triangular is that l  s+t. In contrast to the principle just stated, 

in what follows, the notation (l, s, t) will be understood to mean that l > s > t. When, for 

example, in the triangle (x, y, z), the long side is equal to the short side, we will write (l, l, t) 
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and will continue to speak of “the long side”, specifying thereby ambiguously either of the 

two equal sides.
9
 

 We can now use the ordered triple notation to distinguish among the various types 

of boxes and, a foriori, triangles. Thus, the Cube has the form
10

 (l, l, l), whereas the Brick 

will have (l, l, t), the Plinth (l, s, s) and the Altar (l, s, t). We will call those triangles (and 

the corresponding boxes) in which l < s+t “Normal Triangles” and, as already mentioned, 

those in which l = s+t “Collapsed Triangles”; moreover, in both of these two types l, s and t 

are restricted to be positive real numbers. We also wish to consider triangles whose sides 

may be zero or infinity. Those containing zero, especially, are quite natural from the point 

of view of stretched cords. In fact, the triangle (0, 0, 0) would be generated by not 

stretching the cord at all, but just leaving it in a pile at the point A. It corresponds to the 

geometric point, which is the geometric correlate of the Pythagorean One, from which all 

number is generated. It is, therefore, an important triangle and should be taken into account 

in any systematic account of triangles. Those triangles having infinite sides, in contrast, 

would be abstract possibilities that may or may not have been countenanced by ancient 

thinkers. We will include them in our typology for completeness, but disregard them in its 

application to the Oedipus myth. Thus, triangles having zero or infinite sides will be called 

“Degenerate Triangles”. Table 1 systematizes these relations. 

 

Triangles (or Triangular Boxes) 

 Cube Brick Plinth Altar  

Normal (l, l, l) (l, l, t) (l, s, s) (l, s, t) l < s+t 

Collapsed ------ ------ (2s, s, s) (s+t, s, t) l = s+t 

 

Degenerate 

(0, 0, 0) (l, l, 0) ------ ------ l  , t = 0 

------ (, , 0) ------ ------ l = , t = 0 

(, , ) (, , t) ------ ------ l = , t  0 

 

Table 1. Kinds of Triangles. 

 

As can be seen from Table 1, not all of the logical possibilities are realizable. The 

Collapsed Cube would be (l, l, l) with l = l+l. But this is impossible since l  2l for any 

positive real number. There is also no Collapsed Brick since l = l+s is impossible, given 

that l and s are positive real numbers. Various degenerate triangles are also impossible. 

Such is the case with the second kind of Degenerate Cube since we would have to have  = 

l = t = 0. It is evident that there can be no Degenerate Plinths, since for each possibility, to 

wit (l, 0, 0), (, 0, 0) and (, s, s), the criterion of triangularity is not satisfied (l > 0+0,  > 

0+0 and  > s+s). The same thing happens with the putative Degenerate Altars, since, for 

(l, s, 0), (, s, 0) and (, s, t), we have l > s+0,  > s+0 and  > s+t. 

 

Systematic Analysis of Triangles 

                                                           
9 This is because, whenever it will not engender confusion, we will use the same symbol, for example l or AB    , to 
speak of the side itself or of the length of the side. 
10 Clearly, it is immaterial whether we write (l, l, l) or, for example, (s, s, s). 



The Oedipus Myth as Mathematical Allegory 

 

RBHM, Vol. 14, no 29, p. 31-58, 2014 43 

 

 In the previous section, we found eleven distinct kinds of triangles, as detailed in 

Table 1, distinguished by the relative lengths of their sides. Each of these types can also be 

considered with respect to their angles in the following manner: a triangle will be obtuse, 

right, or acute as the angle opposite the long side (l) is greater than, equal to or less than a 

right angle. Since we will not be using triangles with infinite sides, we will also leave them 

out of the present analysis. Hence, we have but eight triangles to consider, which would 

give us 24 possible subdivisions. As we will see, however, only half of the logical 

possibilities are realizable. 

 Although, in general, the exact measurement of angles seems to have been 

problematic for the ancients, the three aforementioned categories immediately fall out of 

the Pythagorean Theorem in the following way: 

The triangle (l, s, t) will be 

(1) acute    if          , 

(2) right     if          , 

(3) obtuse  if          . 

For convenience of presentation, we will tabulate the kinds of triangles in two stages, 

considering first the normal triangles and then the collapsed and degenerate triangles. Thus, 

the normal triangles are given in Table 2. When a category is possible, an example is 

specified in the table. 

 

Normal Triangles 

 Cube Brick Plinth Altar 

 

Acute 

(1, 1, 1) 

1
2
 < 1

2
+1

2
 

(2, 2, 1) 

2
2
 < 2

2
+1

2
 

(4, 3, 3) 

4
2
 < 3

2
+3

2
 

(6, 5, 4) 

6
2
 < 5

2
+4

2
 

 

Right 

 

------ 

 

------ 
(  , 1, 1) 

   )
2
 = 1

2
+1

2
 

(5, 4, 3) 

5
2
 = 4

2
+3

2
 

 

Obtuse 

 

------ 

 

------ 

(3, 2, 2) 

3
2
 > 2

2
+2

2
 

(4, 3, 2) 

4
2
 > 3

2
+2

2
 

 

Table 2. Normal Triangles. 

 

 Of the eight realizable triangles listed in Table 2, only the Right Plinth cannot be 

given in positive integers (nor in positive rational numbers). This is because we have, for 

this triangle,         , which reduces to       . Further, for the Normal Cube (l, l, l), 

it is necessary that         ; similarly, for the Normal Brick (l, l, s), it is necessary that 

        . Consequently, Normal Cubes and Normal Bricks can be neither right, nor 

obtuse. 

 There remain four triangles from Table 2 still to be considered, namely, the 

Degenerate Cube (0, 0, 0), the Degenerate Brick (l, l, 0), the Collapsed Plinth          and 

the Collapsed Altar (s+t, s, t). Since there is but one of each of the four categories from 

Table 2, we can unify the terminology by referring to these as Flat Triangles. They are 

systematized in Table 3, which, again, lists an example whenever possible. 
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Flat Triangles 

 Flat 

Cube 

Flat 

Brick 

Flat 

Plinth 

Flat 

Altar 

 

Acute 

 

------ 

 

------ 

 

------ 

 

------ 

 

Right 

(0, 0, 0) 

0
2
 = 0

2
+0

2
 

(1, 1, 0) 

1
2
 = 1

2
+0

2
 

 

------ 

 

------ 

 

Obtuse 

 

------ 

 

------ 

(2, 1, 1) 

2
2
 > 1

2
+1

2
 

(3, 2, 1) 

3
2
 > 2

2
+1 

 

Table 3. Flat Triangles. 

 

 The Flat Cube is unique and, clearly, must be right. There are an infinite number 

of Flat Bricks, but no matter what l may be,          and, thus, they are all right. 

Analogously, the Flat Plinth          must always be obtuse since          . Finally, 

the Flat Altar (s+t, s, t) is also always obtuse, because                        

for all positive real numbers. 

 

A Perspicuous Representation of the Universe of Triangles 

 

 We will now exhibit an interesting way of representing the universe of triangles up 

to similarity. Before doing so, however, we make a few remarks about the twelve kinds of 

triangles that we have found. 

 As we have already observed, the Flat Cube is unique. Moreover, both the Flat 

Brick and the Flat Plinth are unique up to similarity. That is, given any Flat Brick (l, l, 0), 

we have (l, l, 0) = l(1, 1, 0), so that all Flat Bricks are similar to the triangle (1, 1, 0) with l 

being the similarity constant. Another way of saying this is that all Flat Bricks are similar to 

each other. Analogously, since (2s, s, s) = s(2, 1, 1), all Flat Plinths are similar to each 

other. 

It might appear that the Flat Brick, the Flat Plinth and the Flat Altar are also 

similar to each other, since, from the geometric point of view, they are all line segments. 

The analysis according to stretched cords, however, suggests otherwise. As can be seen in 

Figure 10, this analysis indicates that the correct geometric model is not a simple line 

segment, but a line segment with a distinguished point C, which serves to differentiate the 

three types. 

 



The Oedipus Myth as Mathematical Allegory 

 

RBHM, Vol. 14, no 29, p. 31-58, 2014 45 

 
Figure 10. Geometric model of Flat Bricks, Plinths and Altars. 

 

An arithmetical analysis also confirms this result, since the equation x(1, 1, 0) = y(2, 1, 1) = 

z(3, 2, 1) cannot be satisfied for any positive real numbers x, y, z. 

 As we already mentioned, in order to compare triangles it is interesting to hold 

some aspect of the triangle fixed. We chose to construct all our triangles, with the obvious 

exception of the Flat Cube, on the same constant base       . Further, we stipulate that        be 

the long side of all the triangles. Thus, given the base       , the location of the point C in the 

plane will determine the triangle     . Clearly, however, since        is the long side of the 

triangle, C must fall within, or upon, the circle with center A and radius       . As it turns out, 

however, we will not need the whole circle. 

 Our construction, then, will be as follows. Given the line segment       , situated 

vertically in the plane (see Figure 11), we describe the circle with center A and radius       . 

Next, we bisect        at M and construct the segment        perpendicular to        so that it meets 

the circle at point P. Finally, we describe the circular arc     with center M and radius        

such that it meets the line        at point N. We will now show that the universe of triangles, 

with the aforementioned exception, is given by the set of triangles     , where C is 

constrained to lay upon or within the closed figure       (the shaded portion of Figure 

11). 
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Figure 11. The basic construction. 

 

 We will place the Flat Cube (0, 0, 0) at point A. The other flat triangles will be 

along the radius        as C goes from M to B (see Figure 12). At C = M, the triangle      is 

the Flat Plinth (2, 1, 1). When C is at any of the infinite points between M and B,      is a 

Flat Altar. Finally, when C = B,      is the Flat Brick (1, 1, 0). 

 

 
Figure 12. Flat Triangles. 

 

 Figure 12 is not to be conceived of as a metric space, but as the logical space of 

triangles
11

. Thus, we naturally identify the point M with the Flat Plinth because, when C = 

M, the triangle      is the Flat Plinth. Since all Flat Plinths are similar to one another, any 

Flat Plinth can be used to represent the class of these triangles. It is natural to use, when 

possible, the triangle whose sides are given by the smallest whole numbers compatible with 

the type, which may be called the Eminent Mode of the class, since it exhibits most clearly 

the structure of the class. For the Flat Plinths, the Eminent Mode is (2, 1, 1). We should 

also observe that there is no other point in the area to which C is constrained (see Figure 

                                                           
11 The same may be said of the figures to follow in the text. 
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11) which would give us a Flat Plinth. Hence, the whole class of Flat Plinths is 

concentrated at the point M of the diagram. Analogous remarks apply to the Flat Brick: (i.) 

the Eminent Mode of this class is (1, 1, 0), (ii.) the only allowable point for C that forms a 

Flat Brick is the point B and, thus, (iii.) the whole class of Flat Bricks is concentrated at 

point B. 

 In contrast to the other flat triangles, there are an infinite number of dissimilar Flat 

Altars (s+t, s, t). The Eminent Mode of this class is (3, 2, 1), but it cannot be used to define 

the whole class, as was done for the other classes, precisely because not all the Flat Altars 

are similar to (3, 2, 1). Nevertheless, all the distinct Flat Altars in Figure 12 are dissimilar 

and, moreover, given any Flat Altar, it is similar to a Flat Altar given in Figure 12. To see 

the first claim, let C and C be two distinct points on the open segment       . We will show 

that the triangles      = (s+t, s, t) and      = (s+t, s, t) are not similar. Indeed, if they 

were similar, we would have (s+t, s, t) = k(s+t, s, t). But, s+t =        = s+t, so that k = 1. 

Consequently,      =     , contradicting our hypotheses. 

 To see the second claim, let      = (x+y, x, y) be any Flat Altar. Thus x and y are 

positive real numbers. We can then use Proposition VI.10 of Euclid’s Elements to find the 

point C that will cut the segment        in the same proportion as the segment        is cut by 

point Z (see Figure 13). We are given the point Z on the segment       , as well as the segment 

      . Thus, we make any convenient angle between the two segments, draw        and 

construct a parallel to        through Z. The point at which this parallel meets        is the point 

C which divides        in the same ratio as Z divides       . Consequently, 
 

 
  

 

 
 and 

 

 
 

 

 
  . 

Therefore, (x+y, x, y) = k(s+t, s, t) and we have found the Flat Altar      in Figure 10 

which is similar to     . 

 
Figure 13. Construction of Flat Altar similar to     . 

 

 Turning to normal triangles, the cube is unique up to similarity. Indeed, we have (l, 

l, l) = l(1, 1, 1) and thus (1, 1, 1) is the Eminent Mode of all Normal Cubes. The only place 

that C can be put in our diagram to make a Normal Cube is at point P (see Figure 14(ii.)). 

Whenever C is on the circular arc        and strictly between B and P, as in Figure 14(i.), 

triangle      will be a Normal Brick, for        =       , both being radii of the big circle, 

whereas, clearly,        >        =       . 
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Figure 14. (i.) Normal Bricks and (ii.) the Normal Cube. 

 

 No two of the infinite number of Bricks in Figure 12 can be similar since, as 

happened in the case of the Flat Altars, the constant of similarity would be 1 (since their 

long sides must be equal). Hence, similarity would imply congruency. Now, consider any 

Normal Brick     . The angles  opposite the equal sides are equal (see Figure 15); thus, 

the third angle  must be less than 60°, since, for  = 60°,        =        =        and, for  > 60°, 

       >        =       . Thus,      would not be a Brick, but a Cube, in the first case, or a Plinth, in 

the second. Consequently, by constructing the segment        at an angle congruent to angle 

YXZ on       ,        must fall strictly between        and        Thus, letting C be the point at 

which the segment meets the circular arc    , we find the Normal Brick in our diagram that 

is similar to the given Brick     . 

 
Figure 15. An arbitrary Normal Brick. 

 

 Whenever C is on the segment        (the perpendicular bisector of       ) and strictly 

between M and P, triangle      will be a Normal Plinth. When C = N, we have         =         

=        (radii of the small circle) and      will be a right Plinth. In this case, as we’ve 

already seen,       so that      =                    . Hence, all Right Plinths 

are similar. Moreover, the point C = N is the only allowable point for C that generates a 

Right Plinth. When C is strictly between M and N, it is manifestly the case that        <        
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(see Figure 16). Hence, 2        < 2        =         and triangle      is an Obtuse Plinth. In 

contrast, when C is strictly between N and P, we have        <       . Thus,         =         <         

and triangle      is an Acute Plinth. 

 

 
Figure 16. The Normal Plinths. 

 

 Once again, no two distinct Plinths in the diagram are similar since they all share 

the common long side       , but have distinct short sides. To see that there does not exist any 

Normal Plinth for which we cannot find a similar Plinth in the diagram, we return to Figure 

15, where we considered the triangle     , stipulating that        =        <       . Referring now to 

the same figure, but stipulating that        =        >       , we have an arbitrary Normal Plinth. In 

this case we must have that the angle  < 60° since, if  = 60°,  = 60° and triangle      is 

a Cube, whereas, if  > 60°,  < 60° and      is a Brick. Hence, by constructing angle 

ABC congruent to angle , C falls strictly between M and P, resulting in a Normal Plinth 

in our diagram that is similar to the given Plinth     . 

 Finally, the Normal Altars occur whenever C is in the interior of the region 

     . In the case that C is on the circular arc    , strictly between the points B and N, the 

triangle      is inscribed in the semicircle       (only half of which is shown in Figure 

17) and, therefore, is a Right Altar. Now consider any point D in the interior of the region 

     . Comparing it with the point C on the circular arc     and on the same horizontal 

line as D (see Figure 17), it is clear that        <        and        <       . Hence,        +        < 

       +        =         and triangle      is an Obtuse Altar. Analogously, if the point E is in the 

interior of the region      , we have that        <        and        <       , so that         =    +        < 

       +        and, thus, the triangle      is an Acute Altar. 
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Figure 17. The Normal Altars. 

 

 Once again it is clear that no two Normal Altars in the diagram (with allowable C) 

can be similar without being congruent, given that the long sides of each is the segment       . 

So consider an arbitrary Normal Altar      = (      ,       ,       ) and let it be similar to the Altar 

     = (      ,       ,       ). We will show that the point C must fall in the interior of the region 

     12
. Clearly, C must fall within the circle of radius        since, otherwise, side        would 

be equal to the long side        (if C were to be on said circle) or longer than        (if C were to 

be beyond this circle), contrary to hypothesis. Further, C must be above the segment        

since, otherwise,        would be equal to        (if C were to be on said segment) or longer than 

       (if C were to be below this segment), again contrary to the hypothesis. Finally, C cannot 

be on the segment       , because then triangle      would be Flat, not Normal. By process 

of elimination, C must be in the interior of the region      . Consequently, given any 

Normal Altar, there is a normal Altar in our diagram which is similar to the given Altar. 

 

The Universe of Triangles 

 

 Our analysis of triangles, albeit at times rather informal,
13

 was undertaken from a 

point of view that is, at minimum, consonant with that of the ancient Pythagoreans and the 

practice of using stretched cords for making geometric diagrams in surveying and 

architecture. We believe that it would be not only comprehensible, but also compelling, to 

educated men of fifth century BC Athens. Specifically, discounting the abstract possibility 

of triangles with sides of infinite length, we classified all triangles into twelve categories 

which are collectively exhaustive and mutually exclusive. Further, we exhibited a 

perspicuous way of representing these categories in a geometric diagram (Figure 18), which 

                                                           
12 We assume that the existence of  ABC would not be questioned. We further assume that C is to be placed to the 

right of the segment AB     in the diagram; in doing so we discount the handedness (chirality) of the triangles, since 
from the point of view of stretched cords, the limitation to rotation in the plane does not seem pertinent. 
13 At certain points in the argument, for example, we deduced certain relations from the evidence present in the 

figures. This would not be allowable in modern mathematical practice, but would not have been objectionable to 
the ancients. Since we are trying to reconstruct an ancient scheme, it seems preferable to eschew modern 

mathematical rigor for arguments more akin to the thought of the ancients. 
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we may call the Universe of Triangles, since it contains all triangles in a unique manner up 

to similarity. That is, given any triangle, we can find one, and only one, triangle similar to 

the given triangle and contained in the diagram. By “triangle contained in the diagram” we 

understand that the triangle is either the point A or is formed on the base AB by placing the 

third vertex C either in the interior of region MBPM of Figure 18 or on the boarder thereof. 

 
Figure 18. The Universe of Triangles. 

 

 In the next part of the present paper, we will show how the Universe of Triangles 

can be seen as a primitive astral map and then be related to the Oedipus myth through the 

concept of mathematical allegory. 

 

Part Three: The Myth of Oedipus as Mathematical Allegory 

 

 We now return to our question about the determination of Oedipus’ fate. The fact 

that we have identified twelve distinct types of triangles might lead us to suspect that they 

were identified with the twelve signs of the zodiac and that, therefore, we should be looking 

for Oedipus’ horoscope. The geometry of Figure 18, however, makes this unlikely because 

it does not provide, in a natural way, a circuit along which the sun’s movement could be 

plotted. It is also unlikely from a historical point of view since at the time the myth was 

framed horoscope astrology, according to B. L. van der Waerden (1974), had yet come into 

existence. Nevertheless, this author attests to the existence of a primitive zodiacal astrology 

related to Orphism, a movement closely akin to the Pythagoreans. Since the Oedipus myth 

is also related to Orphism, we may expect that the Universe of Triangles is connected, in 

some manner, to astrological observations. 
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The Astral Map 

 

 That the Universe of Triangles is indeed a primitive astral map can be seen by 

identifying the nodal points of Figure 18 by the Eminent Modes of the relevant triangles. In 

Figure 19 we make this identification and also make certain correlations suggested by the 

riddle of the sphinx and Oedipus’ solution thereof. Thus, point M represents the Flat Brick, 

the Eminent Mode of which is the triangle (2, 1, 1). The sides of this triangle sum to 4, 

which corresponds to the morning in the riddle of the sphinx, when the object of the riddle 

goes by fours. Point B, representing the Flat Altar with the Eminent Mode (1, 1, 0), 

corresponds to noon, the time of going by twos. Point P represents the Acute Cube and has 

the Eminent Mode (1, 1, 1); thus, it corresponds to the evening, the time when the object of 

the riddle goes by threes. Finally (we will return to point A later), by continuing the 

analogy, point N must correspond to death. This is indeed appropriate, not only because this 

point represents the Right Plinth with its inherent irrationality, but also because the Right 

Plinth is the half-square. The square is traditionally conceived of, in the doctrine of the four 

material elements, as the form of the element Earth, the mundane element, opposed to the 

divine element of Fire and linked to earthly mortality. 

 Oedipus’ solution to the riddle of the sphinx is interesting in that it correlates 

temporal periods in a single day with periods in man’s life. We can express this very 

conveniently as an extended analogy in the following way: 

 

morning : youth :: noon : adult :: evening : old age. 

 

These correlations strongly suggest that they are indicative of a macrocosm/microcosm 

analogy, which induces us to extend the analogy further:   

 

morning : youth : spring :: noon : adult : summer :: evening : old age : autumn. 

 

This extended analogy, in its turn, suggests the identification of the nodal points N, 

B, P and N in Figure 19 with, respectively, the Spring Equinox, the Summer Solstice, the 

Fall Equinox and the Winter Solstice. 

 
Figure 19. 
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 Once these correlations are made, Figure 19 can be seen as a primitive astral map, 

in which the year’s turning points are demarcated by the aforementioned nodal points of the 

figure. 

 

The Green Child 

 

 Since the Oedipus myth speaks to Oedipus’ own destiny, the answer that he gives 

to the riddle of the sphinx is, strictly speaking, inaccurate. It is not man in general that is the 

object of this riddle, but Oedipus himself. This may go some way in helping to clarify some 

aspects about the sphinx that have always seemed rather puzzling. Why, for example, 

couldn’t any of the Thebans solve what is a fairly simple conundrum? Why didn’t they just 

go out and shoot the sphinx with arrows
14

? Why, finally, does the sphinx dash herself to the 

ground when Oedipus solves the riddle? Such questions, however, are only troublesome 

when the sphinx is seen as a run-of-the-mill reality monster. As a mythical monster, 

however, the sphinx is the symbol of that desolation which threatens to destroy Thebes and 

which can only be averted by Oedipus’ fulfilling of his destiny. It is also a foreshadowing 

of the new desolation which is to befall Thebes in consequence of his heinous crimes and 

which, again, is only to be averted by his acceptance of his fate. 

 We can gain a better perspective on all this by contemplating the temporal 

correlations set out in Figure 19. Since both the day and the year are cyclic periods, these 

correlations suggest that Oedipus does not merely live a linear life, from birth to death, but 

that his existence is also cyclic. Thus, Oedipus not only fulfills his early promise by 

becoming the savior of and the accomplished king of Thebes, but he also must weaken, 

wither and die, only to be reborn to new cycles of growth, glory, decline and death. This 

pattern of seasonal cycles of death and rebirth is characteristic of myths of the Green Child, 

the god of vegetation, and the Great Earth Mother, which reaches back to at least Neolithic 

times. According to this myth the Green Child is nurtured by the Earth Mother and his 

bounty averts the desolation of famine. Nevertheless, in order to perpetuate his bounty, he 

must suffer, wither and die so that he may become the seed that will reinitiate the process 

anew. In fact, this is exactly what happens in the Oedipus myth, for Oedipus first rids 

Thebes of the desolation due to the sphinx, becomes a glorious and prosperous king, who 

ages, becoming thereby less bountiful, and finally dies in order to renew his creative 

powers. 

 Figure 19 corroborates the Oedipus as the Green Child interpretation, for, in 

addition to the temporal correlations already set out, the point N, the mundane and mortal 

half-square, can be interpreted as the entrance to the underworld. In fact, Oedipus is, in the 

myth, actually brought down into the underworld, as is attested by Sophocles in his play 

Oedipus at Colonus. Further, the point A, situated outside of and below the astral map may 

be conceived of as the underworld, or perhaps better, the Earth Mother herself. In any case, 

we recall that this point represents the Flat Cube, that is, the point triangle, corresponding to 

                                                           
14 This was the incredulous response of the ancient skeptic Palaephatus. See, for example, Wilson (s.d.). 
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the unstretched cord coiled up at the origin. Thus, it is the seed, nestled in the nutritive earth 

after the demise of the spent plant, from which the plant will be reborn. 

 Some minor details also support the identification of Oedipus with the Green 

Child. We mention only
15

 the name Oedipus, which, as we already recounted, means 

“swollen foot”. In terms of the fanciful story, this name is due to a permanent disfiguration 

of his foot that was incurred by the pinioning of his feet when he was to be exposed to the 

elements as an infant. In terms of its symbolic meaning in the myth, however, Oedipus is 

the grain swollen with ripeness at full maturity (point B in Figure 19), presaging however 

the soon to come bursting of the seed, withering of the plant and germination of the seed to 

start a new cycle. 

 

Casting of Lots 

 

 If we are not to turn to traditional astrology for the determination of Oedipus’ fate, 

it seems that we must go back to earlier methods. One of the most widespread of these 

earlier methods is that of the casting of lots, which is mentioned, for example, in various 

places in the Old Testament. It is also attested to in Classical Greece. In fact, it is used by 

Plato in the Myth of Er at the end of the Republic. Therein Plato describes a group of souls 

about to be reincarnated who must choose from a set of available lives. The choice itself is 

left to each soul, but the order of the choosing is determined by lot. This is clearly a 

philosophical reinterpretation of an older belief in the determination of one’s fate by the 

casting of lots. 

 The casting of lots can be done in various ways. The lots themselves may be 

marked, as in the Myth of Er, so that each lot has its own import. A very simple version of 

this is the drawing of straws: the short straw is the fateful one. Alternatively, lots may be 

cast out, in which case one’s fate is determined by how or where they fall. 

 If then the Orphics or an Orphic-like group were, as van der Waerden attests, 

involved in the development of a primitive zodiacal astrology, it would be natural for them 

to combine their traditional practice of the casting of lots with their new astrological lore. 

Once the full zodiacal representation was in place, the lots would soon fall into disuse 

because the positions of the planets in the zodiac would bear the whole burden of 

astrological predestination. In the transitional phase, however, primitive astral maps like 

Figure 19 would not be sufficient in themselves to fix destiny. By casting lots onto the 

backdrop of an astral map, however, this traditional practice would be combined with the 

emerging celestial lore of primitive astrology and it would thus certainly have been 

regarded as a powerful tool in determining one’s fate. 

 Nevertheless, since a primitive astral map could be drawn in various ways, these 

primitive astrologers would still have to face an outstanding problem: how to choose among 

the various possibilities and, perhaps, even what information to include in the proposed 

map? In the case of Figure 19, however, the problem is solved in a truly extraordinary 

                                                           
15 Actually other details of many versions of the Green Child myth, such as regicide and/or the rape of the queen, 
find parallels in the Oedipus myth. To follow out all the details here, however, would lead us too far from our 

intent to explain mathematical allegory. The interested reader can find most of these details in Frazer (1963). 



The Oedipus Myth as Mathematical Allegory 

 

RBHM, Vol. 14, no 29, p. 31-58, 2014 55 

manner since the a posteriori human element of repeated observation is forsaken in favor of 

the a priori divine, or at least divine-like, realm of mathematical cognition. Indeed, the fact 

that the figure is both complete, in the sense that it contains all triangles, and just, in the 

sense that each triangle is represented in only one way, makes it eminently appropriate for 

the task at hand of fixing of one’s destiny. 

 

Oedipus’ Lot 

 

 Once the, so to speak, machinery of the primitive astrologer has been worked out 

in the specification of the astral map and the casting of lots upon it, it is still necessary to 

reconstruct the heuristic principles by which the diviner would be able to translate the 

mathematics into human destiny. Fortunately, we are able, in the case of Oedipus, to 

dispense with a full heuristic analysis since the myth contains an important element that 

reveals Oedipus’ lot. 

 Recall that the fateful happenstance, the murder of Laius, which triggers Oedipus’ 

entire career, occurs in the Myth of Oedipus at a place where three roads meet. At the time, 

Oedipus is in the prime of life. So too, in the Myth of the Green Child, the suffering god is 

cut down in the prime of life, just as the ripe grain bursts with seed and begins to wither. 

But there is, in Figure 19, but one point that clearly corresponds to the conjunction of three 

separate lines (roads). This is point B, which is indeed appropriately situated at the summer 

solstice and, thus, correlated with adulthood. Thus, Oedipus’s lot must have fallen on point 

B. In the fanciful story, Oedipus raises to the highest glory by saving Thebes from the 

famine and pestilence caused by the sphinx. This may be symbolized by the fact that point 

B is the highest point of Figure 19. Nevertheless, due to his heinous crimes, he also falls to 

the lowest degradation in his blindness and dependence on Antigone. We may conceive of 

this as his fall to point P, the farthest point from the upright AB axis. Yet, Oedipus is not a 

simple criminal. In fact, the gods accord him the distinct honor of a visit to the underworld 

and a hero’s place in the stars after his death. This can only be understood in symbolic 

terms, for the Green Child too reaches the highest of splendors in the full bounty of the 

ripened grain, only to subsequently fall to degradation and death, just as the plant withers, 

dies and returns to the Earth in preparation for rebirth. 

 The primitive astrologer, perhaps associated with an Orphic poet, would 

presumably have contemplated the Universe of Triangles and recognized it as an astral 

map. That would lead him to something like Figure 20, in which the top part of the figure 

would represent the Heavens, with the solstices and equinoxes demarcated, and in which 

the point A would represent the Earth. Since N is the half-square, the Material Element 

Earth, an immediate mystical connection would be made between N and A, suggesting that 

N is the entrance to the underworld. This, in turn, would recall the Myth of the Green 

Child; in fact, Figure 20 would probably be considered a spectacular mathematical 

demonstration of the veracity of this myth. 
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Figure 20. 

 

 Since the mathematical details would not have been amenable to all, the 

astrologer, or again his poetical associate, would have to transform the erudite explanations 

into a fanciful story, or as Plato would say, although in another (but related) context, a 

“plausible story”. Thus, the outline of the Myth of Oedipus would be framed on Figure 20, 

without, naturally, straying too far from the basic story of the Green Child as being a king 

who guarantees prosperity for a while, but who must suffer and die to make way for a new 

king with renewed powers. The specifics of the Oedipus Myth, however, would grow out of 

the salient features of Figure 20. In particular, the riddle of the sphinx would have been 

generated by the Eminent Modes of triangles M, B and P, the fateful happenstance 

occurring at a point where three roads meet would have been suggested by the fact that the 

two circular arcs and the base of the triangles meet at point B and the descent to the 

underworld would be occasioned by the mystical connection between points N and A. 

Finally, the fact that the gods give Oedipus a place among the stars, which is of course 

symbolic of the Green Child’s rebirth, would have been suggested by the opposition of the 

Heavens and the Earth in Figure 20. 

 

Conclusion 

 

 Many Ancient Greek thinkers, amongst whom the Pythagoreans are, in this regard, 

the most well known, held, explicitly or implicitly, that mathematics was the key to the 

understanding of the universe. Although these thinkers are generally considered to be quite 

sophisticated both mathematically and philosophically, they are nevertheless portrayed as 

espousing anemic, if not downright silly, ideas about how this doctrine is to be understood 

in practice. Even sympathetic interpreters tend to offer unsatisfactory explanations. Plato’s 

Nuptial Number, for example, has been the object of numerous interpretations, which 

purport to have puzzled out just what this Number is supposed to be, but that are utterly 

incapable of explaining how it answers Plato’s stated aim of determining better and worse 

births. 
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 One of the principle reasons for this state of affairs is, as we have already 

mentioned, that the sacred nature of mathematical knowledge, when applied to 

philosophical questions, precluded its publication. This means that we have but few reliable 

historical resources to guide us and, thus, are forced to try to recreate the doctrine. Since it 

does seem clear that mathematical structures were seen as indicative of the structure of the 

universe, it would seem reasonable to look for mathematical models. 

 That being said, however, we cannot equate the mathematical models with the type 

of mathematical modeling done in modern science. Indeed, the scientist attends to a certain 

physical situation and attempts to formulate mathematical equations that embody salient 

aspects of the given situation through the processes of simplification, generalization and 

quantification. The “truth” of the equations is thus parasitic on the empirical reality and the 

resulting science, despite its mathematical components, is contingent and fallible.  

 The Ancient Greek attitude is exactly the contrary to that of the modern scientist, 

in that it posits the search for absolutely true and indubitable knowledge and, in 

consequence, it is rather misleading to talk about “mathematical models”. We propose the 

alternative term of “mathematical allegory.” In mathematical allegory the point of departure 

is not an empirical situation, but mathematical theory. Given a mathematical structure that 

is seen to be striking in some respect, it is invested with special meaning beyond its strictly 

mathematical properties and is supposed to reveal occult structures of the universe. In this 

sense, the “truth” of the empirical reality is parasitic on the mathematics. 

 In the example that we’ve presented in the present paper, one of the most 

cosmologically significant (for the Ancient Greeks) figures, the triangle, is the focus of 

attention. The question of how to classify triangles into different kinds was one that was 

problematic for these thinkers. The solution given herein is compelling in that it ties in 

nicely with the basic technique of triangle formation by the stretching of cords. The really 

striking aspect of the theory, however, is that it can be given a perspicacious geometrical 

representation that is complete and contains no repetitions.
16

 Once the mathematical 

structure is in place and deemed to be significant, however, there is still a leap that has to be 

made from the formalism to some empirical context. The leap is negotiated by poetic 

imagination (which is indicated by our terminology “mathematical allegory”). Presumably, 

the Eminent Modes of points M, B and P of the diagram suggested the riddle of the sphinx, 

while the macrocosm/microcosm analogy suggested the myth of the Green Child, which 

would have been known from, at least, Orphism. By combining these motifs with the 

practice of casting lots on the backdrop of an astral map, the Oedipus myth would have 

developed in a Pythagorean/Orphic context. 

 Another possibility is that the riddle of the sphinx was known from another context 

and there also existed, independently, a rudimentary story about Oedipus. In this case the 

“poet”, on contemplating the mathematical structure of the aforementioned triangle 

classification, would have melded these disparate elements into a new powerful myth in a 

version resembling that which has come down to us in Sophocles’ plays. In either case, we 

                                                           
16 The fact that other triangle classifications may also have similar representations does not lessen the purported 

meaningfulness of the present classification. It may be that they too can be fitted to other empirical situations or it 
may be that they were not deemed suitable for allegorical treatment. At present, we can only pose this question as 

an open problem. 
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have an example of how the Ancient Greeks would have articulated their doctrine that 

mathematics reveals the structure of the universe; moreover, it is an example that is 

consonant with the sophistication of these ancient thinkers. 
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