
Socrates in Babylon 

RBHM, Especial n
o
 1, p. 477-491, 2007 477

 

 

 

 

 

 

SOCRATES IN BABYLON 

 
Peter Damerow 

Max Planck Institute for the History of Science - Germany 

 

 
Introduction  

 

Socrates never visited Babylon. He probably did not even know that in the Old 

Babylonian period about 1,000 years before his birth Babylonian scribes produced texts that 

about 2,000 years after his death would be known, using a seemingly genuine Greek term, 

as Babylonian mathematics. The focus of this paper then is not the question of where 

Socrates traveled during his lifetime but rather whether it is feasible to assume that a 

Babylonian scribe argued about mathematics in the same way that Socrates as a spokesman 

of Plato did 1,000 years later.  

This question of what Babylonian scribes were able to establish is not in the first 

place a question about historical facts but rather an epistemological question. Is Greek 

mathematics a creation sui generis or can it be reasonably compared with the earlier 

Babylonian mathematical tradition? Is “Socrates in Babylon” a possible historical scenario. 

 

Greek mathematical proofs  

 

According to a widely held opinion ancient Greek mathematicians were the first to 

use proofs for assuring the truth of mathematical statements. Up to present times 

mathematical proofs in the Greek tradition serve as a normative model for representing 

deductive reasoning. There is an uninterrupted tradition reaching from the Elements of 

Euclid to modern mathematics to construct relations between propositions by chains of 

arguments arranged according to this model, and, as a matter of fact, neither Egyptian nor 

Babylonian mathematical texts contain anything comparable to a Greek proof.  

As a consequence, until the first half of the 20th century the much older 

compilations of mathematical problems and problem solutions in Egypt and Babylonia 

were considered as mere collections of rules known from practical experiences. Hermann 

Hankel in his famous book on the history of ancient mathematics (Hankel 1874), for 

instance, divided this history into a prescientific and a scientific era beginning with Greek 

mathematics. In his monumental reference work on the history of mathematics Moritz 

Cantor in 1880 came to believe that in Egypt there must have existed a still undiscovered 

theoretical textbook on mathematics. But he remarked: “It is not so as though we are 

thinking of a theory in the modern sense. If one would not even simply consider evidence 
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sufficient instead of any proof, proofs will mostly have been carried out inductively, 

possibly also on the basis of insufficient induction” (Cantor 1880, p. 63). Johan Ludvig 

Heiberg identified as late as 1925 ancient science with Greek science. He wrote about the 

Greeks: “Their contacts with the old civilization in Egypt and Mesopotamia may at best 

have challenged and provided them with material; but the Orient, bound by religion, was 

unable to make science of it; this only the free-thinking Ionia could accomplish.” (Heiberg, 

1925, p. 1) For all these authors Socrates in Babylon would have been an impossible 

scenario. 

 

The challenge of Babylonian mathematics 

 

This belief was substantially challenged in the 1920s when cuneiform tablets were 

identified that obviously held the solution to problems implicitly representing second 

degree equations. Since then hundreds of tablets with more or less complex mathematical 

problems have been translated and interpreted documenting what is now called Babylonian 

mathematics. In spite of the fact that the mathematical cuneiform tablets do not contain 

proofs as they occur in Euclid’s Elements, most historians of mathematics working on 

Babylonian sources were soon convinced that they implicitly represent mathematical 

derivations comparable with the derivations in Greek mathematics and had even possibly 

influenced them.  

This reinterpretation of the early history of mathematics initiated a vivid debate 

about questions such as whether Babylonian mathematics can be considered as real 

mathematics, whether it had any influence on Greek mathematics, whether it is justified to 

translate Babylonian and Greek mathematics into modern formalism, and so on (Høyrup 

1996, pp. 11-17). Today, the debates have calmed down. While many historians of Greek 

mathematics still insist that proofs are the most important achievement in the history of 

mathematics, many historians of Babylonian mathematics simply assume implicitly by 

using modern mathematical formalisms that the solutions of the Babylonian problems are 

the result of essentially the same kind of derivations as those of the mathematical tradition 

going back to the Greeks.  

Thus, essential problems remained widely unsolved. The Babylonian scribes who 

wrote the mathematical tablets do not provide us with deductive reasoning in any form. In 

nearly all cases they do not even formulate general rules how to solve the problems. They 

simply state the problem and inform us about the arithmetical operations to be performed 

with the given numerals to achieve the solution. But the complexity of some of the 

problems and their solutions make it impossible to believe that they should not be the result 

of sophisticated deductive reasoning. But what type of reasoning is it that might be hidden 

behind the succinct formulations of problems and problem solutions on the Babylonian 

mathematical tablets?  

Fortunately, there are certain tablets which, if analyzed carefully, allow us a 

glimpse behind the curtain. These relatively few examples are worth studying meticulously 

as they allow some conclusions to be made about the reasoning that led to the solutions of 
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the given problems. But before we examine two of these tablets let us take a closer look at 

the Greek tradition from a particular point of view. 

 

Socrates and the slave  

 

The Greeks were well aware of the special status of their mathematical 

propositions. They believed that in a certain sense they express something that is necessary 

as it is and cannot be other than it is. But they did not necessarily consider this status as 

depending on the form of representation that is transferred to us by Euclid. This is made 

evident, for instance, by the well-known dialog about the nature of mathematics in Plato’s 

Meno.  

In this dialog, Socrates maintains in a debate with his interlocutor Meno that 

mathematical knowledge is based on inherited ideas. He expresses Plato’s opinion that we 

do not acquire these ideas but simply remember them. Socrates argues that an uneducated 

slave is in the same way capable of inferring mathematical knowledge as an educated 

Greek citizen. To convince Meno of the truth of his claim he calls a slave and demonstrates 

that even this uneducated man is able to find out that the square over the diagonal of a 

square has twice the area of the square itself. 

 

 

 

Figure 1: The drawings of Socrates 

The dialog proceeds as follows (see figure 1). Socrates shows the slave the 

drawing of a square then divides it by halving each side into four equal smaller squares. He 

asks him to imagine that the length of each side of the original square is two feet, now 

divided into two parts of one foot length each. By asking several simple questions Socrates 

guides the slave to the insight that the area of the square must be four square feet.  

Socrates asks now whether it would be possible to draw a square with twice the 

area, that is a square with an area of eight square feet, and how long the sides of such a 

square would have to be. He first receives the wrong answer that the sides must also be 

twice as long. Socrates constructs this larger square and guides him with further questions 

to the result that a square with sides twice as large does not have twice but rather four times 

the original area. Now the slave decides that a square with sides of three feet would have an 

area of eight square feet, but again guided by questions of Socrates he has to admit that this 

square would have nine square feet and thus again would not double the area of the square 

with sides of two feet.  
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The slave is now convinced that he does not know how long the side would have 

to be to give a square that has twice the area of a square with sides of two feet. Socrates 

again draws a square with sides to be imaged as two feet long, complementing it with three 

further squares of the same size to a square with sides of four feet. But now he also inserts a 

diagonal into each square so that these diagonals themselves form a square and guides the 

slave by questions concerning the number of triangles in the original square of two feet side 

length and the number of triangles in the square of diagonals to the insight that this latter 

square has the required property of doubling the area of the original square.  

We do not need to deal here with the question of whether this dialog really 

confirms Plato’s idea that gaining knowledge is closely related to a process of remembering 

inborn ideas. It is obvious that the essential steps of the solution to the problem do not come 

from the slave but from Socrates. He is the one who guides the slave by a sequence of 

simple questions in narrowly defined steps to count the partial areas of a square divided into 

smaller ones in order to find the correct area of squares with different sides. He also is the 

one who finally draws the diagonals forming the square that solves the given problem.  

What is remarkable about Socrates’ questioning of the slave and the interpretation 

of the scene in the dialog of Socrates and Menon is that they share the knowledge that 

allows them to decide whether a mathematical inference leads to a true result. They share 

the same reasoning, that is the reasoning of mathematical proofs. The dialog can be 

considered as a specific representation of a mathematical proof of the statement that the 

square of the length of the diagonal of a square is twice the square of the length of its sides, 

or rather, an Euclidean proof can be considered as a specific representation of deductive 

reasoning which does not depend on the specific form of how it is written down. This 

immediately raises the question of whether the first occurrences of proofs in the way they 

were written down by Euclid can really be identified with the origin of deductive reasoning 

and, in particular, of mathematics itself.  

 

Babylonian calculation of the diagonal of a square  

 

 

  42   25   35

 30

1   24   51  10

 

Figure 2: Old Babylonian practice tablet 
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Given this situation, the relatively few examples of Babylonian mathematics that 

allow for some conclusions about the reasoning that led to the solutions of the given 

problems are worth studying meticulously. One of these examples represented by two 

seemingly unrelated tablets is closely associated with the dialog of Socrates and the slave. 

The first of these tablets (YBC 7289) is of unknown provenience hosted in the 

Yale Babylonian Collection and shows the typical round shape of a practice tablet of the 

disciple of an Old Babylonian scribal school, thus dating to the first half of the second 

millennium B.C. The tablet shows only the drawing of a square with its two diagonals 

inscribed. The length of the sides of the square is indicated by the numeral 30 written close 

to one of them. The numerals 1 24 51 10 are written along one of the diagonals. Underneath 

these numerals is written the sequence 42 25 35.  

These sequences of numerals represent, of course, numerical notations in the 

celebrated sexagesimal positional system of numeration. Each numeral in a sequence 

represents 60 times the value of the next numeral of the sequence. The system does not 

allow the absolute value of the whole sequence to be indicated. The length 30 of the side 

can thus be interpreted as 30 of some length unit, but can also be read as 30 times 1/60, that 

is 1/2, or as 30 times 60, that is 1,800, or as 30 times the square of 60, that is 108,000 in the 

decimal system. Correspondingly, the sequence 42 25 35 can represent the number 42 plus 

25 times 1/60 plus 35 times 1/3600, that is approximately 42.43 in the decimal system, but 

can also represent the number 42 times 3,600 plus 25 times 60 plus 35, that is 152,735 in 

the decimal system. 

There is a simple relation between the two numerical notations written inside the 

square. Halving the number represented by the sexagesimal notation 1 24 51 10 written 

along the diagonal results in the sequence 42 25 35, that is the sexagesimal notation written 

underneath the first one. Furthermore, squaring the number represented by the sexagesimal 

notation 1 24 51 10 result in the sexagesimal notation 1 59 59 59 38 1 40 representing a 

number that is extremely close to the number 2 or to the number 2 multiplied by some 

power of 60. If we choose the absolute value of the sexagesimal notation 1 24 51 10 

appropriately it thus turns out that it represents an extremely precise approximation of the 

square root of 2.  

In fact, if we raise the last sexagesimal digit of the notation by one to 1 24 51 11, 

the sexagesimal notation of its square is 2 0 0 2 27 44 1. We will not discuss here the 

puzzling fact that seemingly this sexagesimal notation could not be written with the Old 

Babylonian cuneiform numerals since there was no sign for representing zero. This notation 

would have been written as 2 2 27 44 1 usually without any indication of the two zeros thus 

resulting in a totally ambiguous notation. But the comparison of the anachronistic notation 

2 0 0 2 27 44 1 with the square 1 59 59 59 38 1 40 of the number given by the notation 1 24 

51 10 written on the tablet is the closest approximation of the square root of 2 that could be 

written with 4 digits of the Old Babylonian sexagesimal positional system of numerical 

notation. In decimal notation it differs from the square root of 2 only by approximately 

0.0000006. 

What conclusions can be drawn from this school tablet concerning mathematical 

inferences that, as far as we know, have never been written down explicitly but may have 

been performed in the heads of the disciple or the teacher?  
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Since multiplying the length of the side of a square with the square root of 2 

results in the length of the diagonal it is obvious that the drawing on the practice tablet and 

the numerical notations associated with the drawing served somehow to teach a disciple 

how to calculate the length of the diagonal of a square. The simplest interpretation of the 

tablet suggested by the drawing and the numerical notations is that the teacher instructed 

his disciple to calculate the diagonal  of a  square by multiplying the length of its side with 

1 24 51 10. This interpretation is strongly supported by the occurrence of this numerical 

notation in one of the so-called coefficient lists (YBC 7243, see Robson 1999, p. 44). The 

coefficient is designated there as i-li-ip-tum íb-si8, that is, as the “diagonal of the square”. 

If we accept the common belief that such lists of coefficients were used for looking up 

factors by which certain figures have to be multiplied in order to solve specific problems, 

the practice tablet seems to represent nothing but the application of the rule that the side of 

a square has to be multiplied with 1 24 51 10 in order to achieve the length of its diagonal. 

Whether the disciple has to learn the coefficient by heart or whether he is allowed to look 

the factor up in a list of coefficients is unimportant given the situation that what the disciple 

essentially has to learn is to apply correctly a simple arithmetical rule. That the length of the 

side of the square given on the practice tablet makes the multiplication particularly simple 

supports the assumption that the purpose of the exercise documented by the practice tablet 

is not to train arithmetical operations but rather to learn how to solve the geometrical 

problem. 

This interpretation leaves a crucial question open: Where did the teacher get the 

rule from? Has he also simply learned this rule? But who then was the first to establish the 

rule? Who calculated the numerical notation representing the square root of 2 and inserted 

it into the list of coefficients? Two common answers to such questions can easily be 

rejected.  

The traditional answer based on the belief of the superiority and uniqueness of the 

achievements of Greek mathematics would be that the rule was found by experience. This 

answer, however, seems unacceptable given the enormous precision of the coefficient 

which is applied. Nobody could measure at that time the length of a diagonal with the 

precision given by the approximation of the square root of 2 as documented by the present 

practice tablet. For instance, if we assume that the given length of the side of the square 

were 30 cm, its diagonal would have had to be measured with a precision of one ten 

thousands of a millimeter to find a factor of the given precision.  

A more recent answer to the question follows from the common belief that the 

scribes of the Old Babylonian period who wrote the so-called mathematical tablets knew 

the theorem of Pythagoras and that they derived the rule to multiply the length of the side 

with the square root of 2 in order to achieve the length of the diagonal from this theorem. 

But even if the scribes knew this theorem in some form, what evidence do we have that 

they derived rules for the solution of problems from theorems in a way one must have in 

mind to believe that the use of the the square root of two on the practice tablet was based on 

the knowledge of the theorem of Pythagoras. The scribes neither wrote down derivations of 

rules nor even explicitly formulated theorems and rules. They must have derived everything 

in their head that the Greeks had written down and complemented with drawings in order to 

manage complex derivations from their theorems. But why should we assume such superior 
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competence of Babylonian scribes living 1,500 years before the Greek mathematicians, 

which could have enabled them to derive the alleged knowledge about solution procedures 

from geometrical theorems such as the theorem of Pythagoras, doing this all by heart? 

 

 

[Problem 2]

[Problem 3]

[Problem 4]

[Problem 6]

[Problem 7]

[Problem 8]

[Problem 10] [Problem 14] [Problem 18]

[Problem 11]

blem[Probl

Problem 9] [Problem 13] [Problem 17][Problem 1] [Pr[Problem 5][Pr [Problem 9

em 12]

 

Figure 3: Scheme of the obverse of a teacher’s didactic manual  
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A Babylonian teacher’s manual  

 

Fortunately, in the British Museum two substantial fragments of another tablet ex-

ist (BM 15285) which may shed some light on the context of teaching and learning of the 

present practice tablet. Again, this tablet can be dated to the Old Babylonian period in the 

first half of the second millennium B.C. and also comes from a school context. The first 

fragment was published in Neugebauer’s pioneering edition of mathematical cuneiform 

tablets (Neugebauer 1935/37, vol. 1, pp. 137-142 and vol. 2, plates 3 and 4), the second 

fragment was later discovered in the archives of the British Museum and published by Sag-

gs (Saggs 1960). The complete tablet probably contained 41 drawings of nested figures in-

scribed into a square with a side of length 1, each of them complemented by a short de-

scription of the construction of the drawing ending always with the same question: What 

are the areas? 

The format of the tablet, its careful preparation, and the arrangement of the prob-
lems make it unlikely that the tablet should be the exercise of a disciple. It rather seems to 
represent something like a didactic manual of the teacher. The problems do not follow each 

other in an arbitrary order. The order of drawings indicates an intimate connection between 
consecutive problems although the meaning of this order is not always obvious. There is, 

however, a sequence of six problems, starting with the seventh and ending with the twelfth 
problem of the obverse of the tablet, that can be interpreted as steps initiating a specific 

learning process in the mind of the disciple. The drawings alone indicate the connection 
exhibiting essentially the same basic scheme with an increasing complexity of additional 

lines drawn into a square with a side of 1 U  length.  
The basic scheme of these drawings, squares inscribed into the basic outer square 

with different sizes and partly turned 45 degrees, is obviously related to the practice tablet 
discussed above. But the drawings of the sequence also show a great similarity to the 

drawings Socrates used in Plato’s dialog with Meno to make the slave understand that the 
square of the diagonal of a square has twice the area of the original square.  

 

 

 

 

1U , (the side of) a square.  

In the middle I drew another square.  

The square that I drew  

touches the outer square.  

Their area what?  

 

Figure 4: Drawing and problem 7 of the teacher’s didactic manual 

The sequence of problems starts with a single square inscribed into the basic outer 

square. The corners of the inscribed square touch the sides of the outer square in the middle 

so that the outer square becomes the square of the diagonal of the inner square, but the 

diagonals are not drawn. The accompanying text begins with the description of this 
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construction. The following question asking for the areas can be considered as the central 

question of the whole sequence of problems. A correct answer would be that the inner 

square has half the area of the outer square and that the four triangles at the edges resulting 

from the construction of the inner square together cover the other half of this area. This 

answer would obviously solve the problem with which Socrates confronted the slave, and at 

the same time explain how the Babylonian scribes could find the rule to multiply the side of 

a square with the square root of 2 in order to find the length of the diagonal. However, the 

text of the Babylonian teacher seems not to assume that the disciples or, at least, some of 

them would be immediately able to find the answer by merely looking at the drawing. Thus, 

the following problems provide some help for answering the central question concerning 

the relation of the area of a square and the area of the square of its diagonal. 

 

 

 

 
1U , (the side of) a square.  
In the middle 4 triangles,  

1 square. The square that I drew  
touches the other square.  

Their area what?  

 

Figure 5: Drawing and problem 8 of the teacher’s didactic manual 

The second problem concerns the same figure, but the description of its 

construction is different from the description in the first problem. Now the four triangles at 

the corners are drawn and the inner square results from the construction of these triangles. 

This variation of the description of how the same figure can be constructed in a different 

way can be considered as a didactic means to provoke a reinterpretation of the visual cues 

of the drawing in the mind of the disciple. In fact, while the inner square drawn without the 

diagonals provides no obvious hint in helping to find its area, the triangles at the corner 

directly suggest how their area can be found by completing them to squares  

 

 

 

1U , (the side of) a square.  

In the middle I drew a square.  

The square that I drew  

touches the square.  

In the middle of the second square  

I drew a third square. That I drew  

touches the square.  
Their area what?  

Figure 6: Drawing and problem 9 of the teacher’s didactic manual 
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The following problem provides a further hint. Now a further square is inscribed 

into the inner square so that the side of the previously inserted square becomes its diagonal, 

thus repeating the original construction of an inner square touching the outer one. The 

description of the construction follows precisely this scheme. The text returns to the 

description of the first construction, but now literally repeating it for the innermost square. 

What did the teacher expect from this apparent increase of the complexity of the figure? 

The answer to this question is obvious if we remember the error of the slave in his dialog 

with Socrates that doubling the side of a square would also double its area. This seemingly 

self-evident assumption may be an obstacle in accepting that the inscribed squares should 

cover half of the area of the outer square since the side of the inscribed square is evidently 

longer than half of the side of the outer square. The repetition of the operation of inscribing 

a square results in a square with half the side of the outer square, but its area covers 

obviously less than one half of the area of the original outer square. Again, the disciple 

learns to view the original problem from a different perspective, that is, to consider the 

relation between the lengths of the sides of different squares and the corresponding areas in 

order to get a better understanding of the relation between lengths and sides. 

 

 

 

 

 

1U , (the side of) a square.  

In the middle I drew 8 triangles.  

Their area what?  

 

Figure 7: Drawing and problem 10 of the teacher’s didactic manual 

What should the teacher do if, in spite of the deepened understanding of the 

original problem a disciple may have gained, he still does not see how to find the area of 

the inscribed square? The following two problems provide a systematic answer. The area 

has to be divided into smaller areas the size of which can more easily be determined. This 

division into areas that could easily be calculated was the main technique used for hundreds 

of years by the surveyors in Mesopotamia to determine the areas of agricultural fields. The 

description of the construction says that the original outer triangle is divided into eight 

triangles, implicitly assuming that the eight triangles are equal. The resulting figure 

contains the figure of the original problem of the whole sequence, but it is left to the 

disciple to find that out, again by viewing the figure from another perspective. 



Socrates in Babylon 

RBHM, Especial n
o
 1, p. 477-491, 2007 487

 

 

1U , (the side of) a square. 

In the middle I drew a square.  

The square that I drew  

touches the square. In the middle  

of the square  

I drew 4 triangles.  

 

Figure 8: Drawing and problem 11 of the teacher’s didactic manual 

The next problem provides precisely this information as a further hint. The drawn 

figure is the same, but the description of the construction returns now to the original 

description of the inscribed square, now adding to it that four triangles are inscribed into the 

inner square. This solves the initial problem completely. Mere counting of the triangles in 

the original square and the inscribed square shows that the inscribed square covers half of 

its area. 
 

 

 

 

 

1U , (the side of) a square. 

Inside [I drew] 16 triangles. 

Their area what? 
 

Figure 9: Drawing and problem 12 of the teacher’s didactic manual 

A final problem ends the sequence. Returning to the repeated operation inscribing 

the square twice so that the second square has half the length of the side of the original 

outer square, the figure is divided into 16 equal triangles. Eight of them cover the first 

inscribed square and four of them the second inscribed square. The rule is thus made 

obvious that with every inscribed square the area is decreased to one half of the previous 

one. 

 

Geometrical intuition in Greece and in Babylonia 

 

What does the teacher who left us a didactic manual – let us call him the 

Babylonian Socrates – tell us about the nature of mathematics? His manual surely warns us 

to be careful with answers to the questions of when mathematics was created and what kind 

mathematical competence existed before mathematics was created. Obviously, the method 

by which the Greek Socrates helped the slave gain an understanding of how to double the 
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area of a square was well known and already applied in the scribal schools of the Old 

Babylonian period, that is, more than one thousand years before the Greek Socrates was 

born. Not only the outcome that resulted from the questions in the manual of the 

Babylonian Socrates was the same as that resulting from Plato’s dialog. They also shared a 

number of specific peculiarities which tell us something about a common background and 

specific differences of the Babylonian and the Greek way of dealing with geometrical 

problems. 

Both the Babylonian and the Greek Socrates do not make their disciples derive the 

solutions to their answers from mathematical knowledge in the form of propositions. They 

rather refer to the geometrical content of their questions by showing geometrical figures. 

Both refer to the figures by describing how they are constructed, a procedure in the Greek 

mathematical tradition that was later reflected in the prominent role of the construction of 

figures in Euclid’s system of proofs. Both the Babylonian and the Greek Socrates try then 

to get their disciples to look at the figures from different perspectives, to look at them as if 

they were constructed in a different way, essentially starting with those parts that make up 

the answer to the questions, that is, the square of the diagonal. They expect that, at least 

after they had added further lines to the figure, they may get the disciples to find the right 

answer by comparing the adequate parts of the figures.  

But does this mean, that Babylonian and Greek geometry were built on the same 

ground? Surely not. The Greek Socrates on the one hand knew the theorem of Pythagoras 

and how to derive from it the construction of a square with twice the area of a given square. 

He disguises this knowledge behind a strategy of asking questions which enabled the 

uneducated slave to see that his guessed solutions were wrong. He progressively enriched 

his figure until it finally contained the solution, that is the square of the diagonal, so that the 

slave with his limited mathematical knowledge had only to verify its correctness.  

This tells us almost nothing about how Socrates himself would have arrived at the 

solution without his knowledge of the theorem of Pythagoras, nor about the mathematical 

knowledge the slave would have needed to find the solution without the guiding questions 

of Socrates. His dialog with the slave was an artificial construction that should lead the 

slave to accept the correctness of the solution to a specific problem, pretending that the 

slave himself was finding the answer.  

The Babylonian Socrates, on the other hand, when he compiled his manual surely 

did not intend to write down how to solve the problem of finding the length of the diagonal 

of a square as is documented by the practice tablet discussed above (YBC 7289). He 

probably had only vague ideas about what he had to teach his disciples to enable them to 

solve such problems. Our discussion of part of his manual shows that it documents general 

didactic means to enable the disciples to derive mathematical insights and rules for solving 

problems from arguments about geometrical constructions.  

The tablet with the manual remains a unique finding among the great variety of 

some hundred mathematical cuneiform tablets excavated so far. This uniqueness probably 

results from the fact that the teacher wrote down what usually was based on an oral 

tradition of teaching practices. The sequence of questions did not serve as a means of 

teaching how to solve a specific problem but rather to develop the geometrical intuition of 

his disciples. It may be fortuitous that the sequence of six problems of the manual discussed 
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here is so closely related to the calculation of the diagonal of a square on a practice tablet. 

Other problems of the manual do also contribute to learning how to calculate this diagonal. 

There is, for instance, further down on the tablet a square divided into 16 equal subsquares 

and the trivial problem is posed to calculate the areas. This problem would also fit nicely 

into the dialog of Socrates and the slave, but on the Babylonian tablet it is placed too close 

to the end (4th problem of the reverse) to be considered as being concerned with the 

sequence related to the diagonal of a square (7th to 12th problem of the obverse).  

A comparison with the proofs in the Elements of Euclid, which became the model 

of deductive mathematical reasoning, also shows remarkable differences. It is true that, 

similar to Euclid’s Elements where all proofs start with a construction of the figure that is 

subject of the proposition to be proven, the problems of the Babylonian manual also start 

with descriptions of the constructions of the figures. However, whereas the descriptions of 

constructions in Euclid’s Elements tend to be unambiguous, which was made possible by 

the Greek invention of lettering the figures (Netz 1999), the descriptions in the Babylonian 

manual are elliptic and often understandable only together with the figures already drawn. 

Whereas the proofs in Euclid’s Elements tend to use a stereotyped language for all technical 

terms, supported by the Greek invention of defining concepts, the Babylonian manual 

varies remarkably in the descriptions of the constructions by using grammatically inflected 

Akkadian terms or Sumerograms. The difference between Greek and Babylonian geometry, 

insofar as the first is represented by Euclid’s compilation of Greek proofs and the second by 

the ingenious way of developing geometrical intuition for solving problems as is 

documented by the teacher’s manual, can thus be summarized as being that of a linearized 

and canonized technique of representing geometrical intuition in written form opposed to 

an oral tradition of teaching geometrical intuition. This result supports recent attempts to 

reinterpret the so-called Babylonian algebra as actually not being based on algebraic 

methods but on a highly developed geometrical intuition (Høyrup 1990 and 2002).  

Let us finally return briefly to the question of what Socrates in Babylon tells us 

about the nature of early mathematics. Given that Socrates and the Babylonian scribe both 

based their arguments on geometrical intuition and that the deductive form that Greek 

mathematics displays in Euclid’s Elements can be conceived of as a canonized written 

representation of inferences based on geometrical intuition, Greek mathematics can no 

longer be considered as a creation sui generis. Nevertheless, geometrical intuition is no 

universal human resource. Modern studies of ethnomathematical capabilities have made 

evident that a rich variety of different geometrical capabilities can be developed under 

different cultural conditions (Gerdes 1990; Ascher 1994; D’Ambrosio 2006).  

This variety is even greater if we look at the historical development of geometry 

and geometrical techniques. Thus, Greek geometry was dependent on an intuition 

developed on the basis of handling a highly developed technique of constructing figures, 

including an understanding of the differentiation of geometrical shapes by angles, 

congruence, and similarity.  

By contrast, Babylonian geometry was based on a tradition of one thousand years 

of surveying fields. The surveyors did not care for angles and similarity. Their technique of 

surveying was based on the division of irregularly shaped fields into triangles and 

quadrangles, and on a procedure of calculating the partial areas that depended only on 
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length measurements. This made any concept of angle, congruence, and similarity 

irrelevant to them. The area of a triangular field was calculated as half the product of its 

two shorter sides, the area of a quadrangle as the product of the means of opposite sides. 

From the viewpoint of Euclidean geometry these arithmetical procedures appear as mere 

approximations of the “true” Euclidean area, but in the context of the Babylonian tradition 

the concept of area was based on them resulting in some kind of “non-Euclidean” geometry 

which combines the additivity of the area concept with the surveyors’ concept of the 

quantity of an area (Damerow 2001).  

Babylonian mathematics adopted not only the technical terminology of the 

surveying practitioners, but also their area concept which was independent of any concept 

of an angle (Gandz 1929). The consequences were to a great extent identical with those of 

Euclidean geometry. The teacher’s manual discussed here can be seen as a kind of missing 

link between administrative documents of the surveyors and the Old Babylonian 

mathematical texts. The manual shows, on the one hand, how the additivity of the area 

concept was used to develop a geometrical intuition beyond what was needed by the 

practitioners. It shows, on the other hand, how the additivity of the concept of area, applied 

to a variety of complex figures, can lead to solutions of the complex problems of 

Babylonian mathematics. Like the majority of those more complex problems that occur on 

the mathematical cuneiform texts, none of the problems of this manual have anything to do 

with the concept of an angle so that the non-Euclidean geometrical intuition of the 

Babylonian Socrates remains hidden. But if we could listen to the unwritten dialogs of the 

Babylonian Socrates and his disciples we would also hit on such strange challenging 

exercises as the application of the theorem of Pythagoras to triangles other than right-

angled ones (YBC 8633, see Damerow 2001, pp. 244f.) or the task of calculating the length 

of the dividing line of a quadrangle which, under an arbitrary angle, is cut into two equal 

parts (YBC 4675, see Damerow 2001, pp. 280-286). Both problems are sheer nonsense in 

the framework of Euclidean geometry but fit perfectly into the geometrical intuition and 

knowledge of the Babylonian Socrates – but this is another story to be told. 
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