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Resumo 

 

No presente trabalho faz-se uma revisão da nossa interpretação da estrutura matemática da 

Linha Dividida de Platão e a estende para a Linha Duplamente Dividida, mostrando assim o 

alcance da teoria. Então, explicamos detalhadamente em que maneira a solução de Eudoxo 

para o problema de incomensurabilidade é relacionada à teoria de lógos, o que faz possível 

o desenvolvimento de Linhas Divididas com componentes "irracionais". Finalmente, linhas 

Divididas não-aritméticas foram desenvolvidos e Platão usou-las para modelar contextos 

não-matemáticos. 

 

Palavras-chave: Matemática e Filosofia; Linha Dividida; Incomensurabilidade; Teoria de 

Proporção; Platão; Eudoxo. 

 

Abstract 

 

The present paper reviews our interpretation of the mathematical structure of Plato's 

Divided Line and extends it to the Doubly Divided Line, thereby showing how pervasive 

the doctrine can be. We then explain in detail how Eudoxus's solution of the problem of 

incommensurability is related to lógos theory, which makes possible the development of 

Divided Lines with "irrational" components. Finally, non-arithmetical Divided Lines were 

developed, which Plato used to model non-mathematical contexts. 

 

Keywords: Mathematics and Philosophy; Divided Line; Incommensurability; Theory of 

Proportions; Plato; Eudoxus. 

 

 

 In Book VI of The Republic, Plato sets out his doctrine of the Divided Line, 

according to which there is a hierarchical set of levels of reality and modes of apprehension 
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appropriate to each. This hierarchy can be set out in the following manner, in which the 

levels ascend from left to right: 

 

Images / Cosmological Forms / Mathematical Forms / Transcendental Ideas. 

 

It is not our purpose here to investigate the nature of each of these different levels.
1
 

Rather, we wish to point out a curiously neglected aspect of Plato's treatment of the Divided 

Line. Line segments were used in Antiquity to stand for numbers and, eventually, 

incommensurable magnitudes. Thus, it is, to say the least, very curious that Plato has them 

represent non-mathematical entities. Yet, he does so quite decidedly. In Cornford's (1969, 

p. 224) translation, we have: 

Now take a line divided into two unequal parts, one to represent 
the visible order, the other the intelligible; and divide each part again 

in the same proportion, symbolizing degrees of comparative clearness 

or obscurity. [Emphasis added.] 

We seem to have here a clear case of consciously analogical reasoning in an epoch in which 

"analogy" meant proportion. We wish to suggest herein how Plato may have moved from 

the original idea of proportion among positive whole numbers to a more comprehensive 

notion of analogy by way of Eudoxus' theory of proportion and the application of the 

"Golden Mean" to the structure of the Divided Line. 

 In order to fulfill our stated purpose, we will set out in some detail our previous 

reconstruction of the mathematical structure of the Divided Line
2
 and extend it to the 

Doubly Divided Line. This will provide the backdrop against which the extension to the 

case of more General Lines will be made. This extension will be presented, however, only 

after carefully investigating Eudoxus' theory of proportion and comparing it to the older 

Pythagorean theory. We will avoid anachronistic interpretations by viewing Plato's 

understanding of "analogy" not in its full blown modern acceptation, but as revealing the 

mathematical structure of apparently non-mathematical situations. Finally, we will 

conclude by showing how Plato's new understanding of analogy led him to a more 

profound interpretation of the Pythagorean presupposition that the intelligibility of the 

world is due to its mathematical structure. 

 

The Divided Line 

 According to Plato's account in Book VI of The Republic, a line (i.e., a line 

segment) is divided into two unequal parts and each of these parts is then divided in the 

same ratio. The result is a line segment with four parts, which we may represent 

iconographically as x / y / z / t. From the stated conditions, we have x+y:z+t::x:y::z:t. It has 

long been realized that these conditions imply that the two middle segments are equal. It is 

easier for us to see this if, instead of the ratio-proportion language used by the ancient 

Greeks, we use the equivalent in fraction-equality language. Thus, we have (x+y)/(z+t) = x/y 

= z/t. By cross multiplication, we obtain the following equations: 

                                                         
1 See further Erickson and Fossa (to appear). 
2 See Erickson and Fossa (to appear) or Erickson and Fossa (2001). 
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xy+y
2
 = xz+xt 

and xt = yz. 

Substituting for xt in the first equation gives 

xy+y
2
 = xz+yz 

(x+y)y = (x+y)z 

    y = z. 

In consequence, the Divided Line reduces to x / y / y / z, where x+y:y+z::x:y::y:z; that is, 

where (x+y)/(y+z) = x/y = y/z and, thus, y is the geometric mean between the two extremes x 

and z. When, however, we impose the further condition that the variables represent natural 

numbers (positive integers), we find that the Divided Line has a much more definite 

mathematical structure. Thus, let n:m, where m and n are relatively prime positive integers 

(n/m is a fraction in lowest terms), be the ratio into which the segment was originally 

divided, so that (x+y)/(y+z) = x/y = y/z = n/m. Proceeding as above, we obtain  

xm = yn 

and  ym = zn. 

Hence,  y = zn/m 

and  x = zn
2
/m

2
. 

Now, in order for x to be an integer, m
2
 must divide evenly into zn

2
. But m and n are 

relatively prime and, thus, m
2
 must divide evenly into z. Thus, z = km

2
, for some integer k. 

Substituting this value for z in the above equations, we find that x = kn
2
 and y = knm. Thus, 

the Divided Line reduces to: 

kn
2
 / knm / knm / km

2
, 

or, factoring out the k common to all terms: 

k(n
2
 / nm / nm / m

2
). 

When k=1, we say that the Divided Line is Primitive; otherwise, it is Composite. Thus, a 

Primitive Divided Line corresponds exactly to the first part of Plato's Theorem
3
, for the 

middle term is the integral geometric mean between two square numbers. 

 In the passage alluded to above, Plato divides the Line into two unequal parts. This 

is necessary for the philosophical doctrine of the ontological and epistemological 

hierarchies that he is propounding in that passage. From a mathematical point of view, 

however, the structure of the Divided Line is still satisfied when it is divided into equal 

parts. In the case that it is Primitive, we have 1 / 1 / 1 / 1, which we will call the Monadic 

Line. It will be important in what follows. When, however, the division is into two unequal 

parts, we will always follow the convention of writing the large extreme first; we also write 

ratios n:m with n>m. 

 The mathematical structure of the Divided Line is characterized by two theorems. 

The first describes a process of generating new Divided Lines and the second guarantees 

the completeness of the process. 

The Algorithm of the Divided Line. (i) The sum of the elements of a 

Primitive Divided Line is to the sum of the large extreme and the mean 

as this sum is to the large extreme. (ii) The sum of the elements of a 

                                                         
3 That the geometric mean between two perfect squares is integral and that the two mean proportionals between 

two perfect cubes are integral is refered to by Nicomachus (1938, p. 272-273) as " a certain Platonic theorem". 
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Primitive Divided Line is to the sum of the small extreme and the mean 

as this sum is to the small extreme. In both cases, the new Divided Line 

is Primitive. 

To see the first part of this theorem, let n
2
 / nm / nm / m

2
 be a Primitive Divided Line, so 

that m and n are relatively prime, with n>m. The Algorithm asserts that  

 

n
2
+nm+nm+m

2
 / n

2
+nm / n

2
+nm / n

2
 

 

is a Primitive Divided Line. Simplifying the additions, we have 

 

(n+m)
2
 / (n+m)n / (n+m)n / n

2
. 

 

Clearly, (n+m)
2
:n(n+m)::n(n+m):n

2
, the ratio being (n+m):n. Thus, we have only to show 

that the Line is Primitive, that is, that n+m and n are relatively prime. This is an easy 

exercise. Suppose that some whole number, d, divides evenly into both n+m and n. Then, 

n+m=k1d and n=k2d. Substituting the latter expression into the former, we have k2d+m=k1d 

and, thus, m=k1d-k2d=(k1-k2)d. That is, d also divides evenly into m. But, since, m and n are 

relatively prime, d must be 1. Hence, the new Line is Primitive. 

 Part (ii) of the Algorithm generates the Divided Line 

 

(n+m)
2
 / (n+m)m / (n+m)m / m

2
. 

 

The proof that this Line is Primitive is entirely analogous to that of part (i). 

 We now show that the Algorithm is complete. 

The Theorem of the Divided Line. The Algorithm of the Divided 

Line generates all and only Primitive Divided Lines from the Monadic 

Line 1 / 1 / 1 / 1. 

In order to prove this Theorem, it will clearly be sufficient to show how, given any 

Primitive Divided Line, we can trace a path backward to the Monadic Line, which path, 

when reversed, will generate the given Line by successive applications of the Algorithm. 

To this end, let  

 

n
2
 / nm / nm / m

2
            (*) 

 

be a Primitive Divided Line, so that m and n are relatively prime, with n>m. We now ask 

ourselves what Line could generate (*). Since the Algorithm prescribes that one of the new 

extremes will be a sum, we now do the inverse operation of subtraction, namely, n-m. There 

are two cases to consider
4
, for n-m may be greater than or less than m. We first investigate 

case (a): n-m>m. The Line that generates (*) would then have (n-m)
2
 as the large extreme 

and m
2
 as the small extreme. Hence, we would have 

 

                                                         
4 Clearly, n-m=m is impossible, since in this case n would be 2m and, thus, n and m would not be relatively prime. 
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(n-m)
2
 / (n-m)m / (n-m)m / m

2
            (**), 

 

which is clearly a Divided Line. Since it is the small extreme, m
2
, of (**) that appears in 

(*), we apply part (ii) of the Algorithm to (**) to verify whether it generates (*): 

 

(n-m)
2
+(n-m)m+(n-m)m+m

2
 / (n-m)m+m

2
 / (n-m)m+m

2
 / m

2
. 

 

But, (n-m)
2
+(n-m)m+(n-m)m+m

2
 = n

2
-2nm+m

2
+nm-m

2
+nm-m

2
+m

2
 = n

2
. Further, (n-

m)m+m
2
 = nm-m

2
+m

2
 = nm. Thus, applying the Algorithm to (**) does indeed produce (*). 

 Now, if any whole number, d, divides evenly into n-m and also into m, it will 

divide evenly into their sum, n-m+m, which is just n. But, since n and m are relatively 

prime, d=1 and, consequently, n-m and m are relatively prime. Thus, (**) is Primitive. We 

have, therefore, found a Primitive Divided Line, (**), that generates (*). 

 We now investigate case (b): n-m<m. In this case, the Line that generates (*) 

would have (n-m)
2
 as the small extreme and m

2
 as the large extreme. Hence, we would have 

 

m
2
 / m(n-m) / m(n-m) / (n-m)

2
          (***). 

 

It is now the large extreme, m
2
, of (***) that appears in (*), so we apply part (i) of the 

Algorithm to (***). In exactly the same way as in case (a), applying the Algorithm to (***) 

results in (*). In fact, (***) is, so to speak, the mirror image of (**), so the algebra is 

identical. Again, in exactly the same way as in the preceding case, it is shown that (***) is 

Primitive. 

 What we have shown so far is that, given any Primitive Divided Line, we can find 

a new Primitive Divided Line that generates the given Line when the Algorithm is applied 

to it. One of the extremes of the new Line will be the same as one of the extremes in the 

given Line; the other extreme of the new Line will be less than the other extreme of the 

given Line. Thus, by reiterating the process, we obtain new Lines in which the extremes get 

less and less. Eventually, since there is only a finite number of whole numbers between n 

and 1, we come upon a new Line in which the small extreme is 1.
5
 That is, we obtain the 

line k
2
 / k / k / 1. But this Line is clearly generated by (k-1)

2
 / k-1 / k-1 / 1. Continuing in 

this manner, we obtain the Monadic Line 1 / 1 / 1 / 1, in k-1 steps. Thus, we have proven 

the Theorem of the Divided Line.
6
 

 The Theorem of the Divided Line is quite remarkable. Almost as impressive, 

however, is to actually start with the Monadic Line and calculate new Divided Lines, using 

the Algorithm of the Divided Line
7
. At each level, twice as many new Divided Lines are 

generated as at the previous level, so that one gets the impression of an unfolding cascade, 

                                                         
5 This is, of course, equivalent to Euclid's Algorithm for finding the G.C.D. 
6 For the convenience of the reader, we have freely used algebraic symbolism to express the argument. That, 

however, all the required mathematics was known at Plato's time is shown in Fossa and Erickson (to appear). 

There, it is also suggested how the above two theorems might have been demonstrated. 
7 We will look at some special cases below. 
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much in the same way, we may imagine, as Plotinus' successive emanations.
8
 Be that as it 

may, we now turn to the second part of Plato's Theorem and Doubly Divided Lines. 

 

The Doubly Divided Line 

 We now generalize the Divided Line in order to obtain the second half of Plato's 

Theorem. Thus, divide a line segment in two parts and divide each part in the same ratio. 

The result is the Divided Line x / y / y / z. We now divide each of these four parts into the 

same ratio. On doing so, the two means, y, will, of course, be divided in the same way. 

Further, the x / y pair will be split into a Divided Line, thus having equal middle parts. The 

same applies to the y / z pair. In this way we obtain a / b / b / c / b / c / c / d, where 

a:b::b:c::c:d::a+b:b+c::b+c:c+d::a+b+b+c:b+c+c+d. 

 We now ask under what conditions the Doubly Divided Line will be integrally 

valued. We may assume that the ratio of the division is n:m, where n, mN and n:m is in 

lowest terms. Replacing the ratio-proportion language by fraction-equality language, we 

obtain: 

a/b = n/m 

b/c = n/m  

and  c/d = n/m. 

Solving for the numerator on the left hand side of each equation gives: 

a = bn/m 

b = cn/m  

and  c = dn/m. 

Substituting for b and c, we obtain: 

a = cn
2
/m

2
 

and  a = dn
3
/m

3
. 

Since n/m is in lowest terms, m
3
 must be a factor of d, that is d=km

3
 for some kN. Thus, 

a=kn
3
. We obtain c and b by substitution: c = dn/m = (km

3
)n/m = knm

2
 and b = cn/m = 

(knm
2
)n/m = kn

2
m. Therefore, any Doubly Divided Line with integral components will have 

the form: 

 

k [ n
3
 / n

2
m / n

2
m / nm

2
 / n

2
m / nm

2
 / nm

2
 / m

3
 ]. 

 

When k=1, we say the Doubly Divided Line is Primitive; otherwise, it is Composite. Thus, 

in any Primitive Doubly Divided Line, the extremes are relatively prime cubes. Further, we 

call n
2
m the large mean, nm

2
 the small mean, n

3
 / n

2
m / n

2
m / nm

2
 the large component line 

and n
2
m / nm

2
 / nm

2
 / m

3
 the small component line. Finally, we say that the means mediate 

the extremes and that they mediate primitively when the Line is Primitive. 

 We now generalize to this case the Algorithm of the Divided Line and the 

Theorem of the Divided Line. 

The Algorithm of the Doubly Divided Line. (i) The sum of the 

elements of a Primitive Doubly Divided Line is mediated primitively to 

                                                         
8 For the relation between Plotinus and Plato, see Erickson and Fossa (to appear). 
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the large extreme by the sum of the elements on the large component 

line and the sum of the large extreme with the large mean. (ii) The sum 

of the elements of a Primitive Doubly Divided Line is mediated 

primitively to the small extreme by the sum of the elements on the 

small component line and the sum of the small extreme with the small 

mean. 

To see this for part (i), let n
3
 / n

2
m / n

2
m / nm

2
 / n

2
m / nm

2
 / nm

2
 / m

3
 be a Primitive Doubly 

Divided Line and, thus, n and m are relatively prime. The sum of the component parts of 

this Line is n
3
+3n

2
m+3nm

2
+m

3
, which is just (n+m)

3
. The sum of the elements on the large 

component line is n
3
+2n

2
m+nm

2
 = (n

2
+2nm+m

2
)n = (n+m)

2
n. Finally, the large extreme 

plus the large mean is n
3
+n

2
m, or (n+m)n

2
. Fitting all these results together in the prescribed 

way we obtain 

(n+m)
3
 / (n+m)

2
n / (n+m)

2
n / (n+m)n

2
 / (n+m)

2
n / (n+m)n

2
 / (n+m)n

2
 / n

3
 . 

As we saw above, n+m and n are relatively prime when n and m are relatively prime; 

therefore, the result is a Primitive Doubly Divided Line. 

 Part (ii) of the algorithm is similar. The two sums indicated are just (n+m)
2
m and 

(n+m)m
2
. The new Primitive Doubly Divided Line is then: 

(n+m)
3
 / (n+m)

2
m / (n+m)

2
m / (n+m)m

2
 / (n+m)

2
m / (n+m)m

2
 / (n+m)m

2
 / m

3
 . 

Thus, the Algorithm of the Doubly Divided Line is established. 

It should be clear that these two algorithms can be generalized and, thus, the 

mathematicians of the Academy were just a step away from the binomial theorem and 

Pascal's Triangle. 

 We now formulate the following theorem: 

The Theorem of the Doubly Divided Line. The Algorithm of the 

Doubly Divided Line generates all and only Primitive Doubly Divided 

Lines from the Doubly Monadic Line 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1. 

As in the case of the Theorem of the Divided Line, we start from any Primitive Doubly 

Divided Line and ask what Line, using the Algorithm, would generate it. Again, since the 

Algorithm proceeds by addition of the elements of the basic ratio n:m, we use the inverse 

operation of subtraction. Thus, given any Primitive Doubly Divided Line 

(*)     n
3
 / n

2
m / n

2
m / nm

2
 / n

2
m / nm

2
 / nm

2
 / m

3
 , 

we have, by our convention, n>m (and, of course, n and m, relatively prime). Consequently, 

n-m is a positive whole number such that either n-m is greater than m or n-m is less than m. 

For n-m greater than m, we consider  

(**)     (n-m)
3
 / (n-m)

2
m / (n-m)

2
m / (n-m)m

2
 / (n-m)

2
m / (n-m)m

2
 / (n-m)m

2
 / m

3
 . 

Clearly, (**) is a Doubly Divided Line. Further, n-m and m are relatively prime because n 

and m are relatively prime. Thus, (**) is also Primitive. Now we apply the Algorithm to 

(**) in order to verify that it generates (*). Since (*) keeps the small extreme from (**), 

part (ii) of the Algorithm is applicable. A bit of algebra shows that the sum of all the 

elements of (**) is just n
3
. Thus, applying the Algorithm to (**) will give us a Line whose 

extremes are n
3
 and m

3
. The new large mean is the sum of the last four elements of (**), 

which, after another bit of algebra, is just n
2
m. Finally, the new small mean is the sum of 
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the small extreme of (**) with its small mean and this turns out to be nm
2
. Thus, applying 

the Algorithm (part ii) to (**) does indeed produce (*). 

 For n-m less than m, we consider 

(***)     m
3
 / m

2
(n-m) / m

2
(n-m) / m(n-m)

2
 / m

2
(n-m) / m(n-m)

2
 / m(n-m)

2
 / (n-m)

3
 . 

Since m
3
 is now the large extreme in (***) and it is kept in (*), part (i) of the Algorithm is 

applicable. Further, since (***) is, so to say, the mirror image of (**), it turns out that the 

algebra is exactly the same in this case as in the previous one. Thus, applying the Algorithm 

(part i) to (***) produces (*). 

 In the same way as happened in the case of the simple Divided Line, by reiterating 

the process, we eventually reach a Doubly Divided Line whose small extreme is 1. From 

this, we can work back to the Doubly Monadic Line and the Theorem is thus established. 

 In the Divided Line, we have a perfect parallel between the Line and the 

proportion it gives raise to: 

  a / b / b / c 

and a:b::b:c. 

This does not carry over in the Doubly Divided Line, since the Line has eight parts, but the 

proportion only six: 

  a / b / b / c / b / c / c / d 

but a:b::b:c::c:d. 

Thus, it would be interesting to describe the Doubly Divided Line in terms of the Divided 

Line. This is easily done. The following theorem does so for Primitive Lines, but the 

generalization to any Line is almost immediate. We introduce the following terminology: 

the "roots" of a Primitive Line are the roots of its extremes (we may also call these the 

"generators" of the Line); the "primitive ratio" of a Primitive Line is the ratio of its roots, 

the larger to the smaller. 

The Double Line Theorem. In all Primitive Doubly Divided Lines, 

the large component is the Primitive Divided Line with the same roots 

as the Doubly Divided Line multiplied by the first term of its primitive 

ratio; the small component is same Divided Line multiplied by the 

second term of its primitive ratio. 

The proof is straightforward. Let 

n
3
 / n

2
m / n

2
m / nm

2
 / n

2
m / nm

2
 / nm

2
 / m

3
 , 

be a Primitive Doubly Divided Line. Thus, n and m, the roots of the Line, are relatively 

prime and n:m is its primitive ratio. The Primitive Divided Line with the same roots is n
2
 / 

nm / nm / m
2
. Thus, we have only to factor out n from the large component and m from the 

small component to prove the Theorem: 

 

n(n
2
 / nm / nm / m

2
) / (n

2
 / nm / nm / m

2
)m. 

 

 The mathematical structure of the Platonic doctrine of the Divided Line is thus 

seen to be a compelling and beautiful structure, based on ratios and proportions among 

positive whole numbers. We now turn our attention to Eudoxus. 
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Eudoxus' Accomplishment 

 The standard interpretation of Eudoxus' theory of proportion is that it incorporates 

the irrational numbers into the realm of mathematics and thereby saves mathematics from 

the "scandal" thrust upon it by the discovery of incommensurability. It is also frequently 

observed that his theory is virtually identical with Dedekind's construction of the irrationals 

in the nineteenth century. Now, all of this is so clearly anachronistic that certain caveats are 

often employed to attenuate the more ahistorical aspects of the interpretation, but even this 

attenuated standard interpretation is not really satisfactory.
9
 Thus, we will now take a closer 

look at just exactly what Eudoxus' theory of proportions does and how it does it. 

 The first thing that should be noticed is the difference between the modern notion 

of irrational numbers and incommensurability. The irrationals are indeed an extension of 

the rationals, in which the basic arithmetical operations carry over. For the ancient Greeks, 

in contrast, incommensurability is a relation between two magnitudes: the relation that 

obtains when the two do not have a common measure. Now, that there should be 

incommensurables at all is a very surprising, nonintuitive result. It was also a disturbing 

result to the Pythagoreans because it undermined their mathematics and, thus, their whole 

philosophy. This is often expressed in the literature by the observation that 

incommensurability contradicts the Pythagorean axiom that "all is number". This, however, 

does not tell the whole story. 

 More careful renditions express the Pythagorean position as "all is number and 

harmony".
10

 In order to fully comprehend the Pythagorean dictum, however, we must flesh 

out the meaning of "harmony". Later to be called music, harmony is ratio (λόγον) and 

proportion ('ανά λόγον, later written as a single word 'ανάλογον, "analogy"). The 'ανά here 

means "throughout" and has an intensifying quality. (Compare γιγνώσκω "know" and 

'αναγιγνώσκω "know well".) Thus, a proportion is a sequence of terms in which a ratio 

(lógos) is carried over to the component pairs. It does not seem to have been noticed that, 

for the Pythagoreans, number itself is a lógos. Number is a collection of units
11

 and is 

therefore measured by the unit. Thus, 7, for example, is thought of as 7:1 and can only exist 

as a number (a multiplicity) in virtue of its relation of lógos to the unit. In more complex 

ratios, the second term is thought of as a unit which either measures the first term 

integrally, as in 6:3 (a musical octave), or with the help of its parts, as in 4:3 (a musical 

fourth). The latter case is possible, because the unit (3) can be decomposed into subunits (1) 

that also measure the first term (4). In consequence, all ratio (lógos) is the relation of a first 

term measured by a second term, or a submultiple of the second term, and this then 

becomes the Pythagorean model for intelligibility. 

                                                         
9 Grattan-Guinness (1996) denies the purported near identity of Eudoxus' theory of proportion and Dedekind's 

theory of irrationals. He also denies that Eudoxus' theory is an extension of proportion theory to irrational 

numbers. Rather, he claims that Euclid set out two different proportion theories, one for integers and one for 

magnitudes, with similar structures. 
10 This is based on Aristotle's remark (Metaphysics, 986a): "... — since, then, all other things seemed in their whole 

nature to be modeled on numbers, and numbers seemed to be the first things in the whole of nature, they supposed 

the elements of numbers to be the elements of all things, and the whole heaven to be a musical scale and a 

number." 
11 Euclid, Book VII, Definition 2. 
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 The preceding paragraph only hints at the Pythagoreans' sophisticated 

understanding of ratio. In particular, the unit, the numerical correlate to the Monad, the font 

of all being, is not a fixed quantity, but is anything that can be regarded as having an 

internal unity; that is, it is anything that can be thought without regard to its component 

parts.
12

 Thus, as we have seen, 3 may be regarded as a unit that measures its multiples
13

 and 

4 and 3 are commensurable because they are measured by a common unit, 1. Number was 

often represented by line segments, but there was no set length for the unit line segment. 

This means that, for example, the side of a square of area 32 to the side of a square of area 

18 is a musical fourth. The two sides are commensurable, having the side of a square of 

area 2 as their common unit measure. The sides in question are 42 and 32 and the unit is 

2. Thus, even though all these are irrational magnitudes, we still have lógos in the 

aforementioned ratio.
14

 

 The trouble comes with such expressions as 42:3, or, more simply, 2:1. The 

problem is that neither 1, nor any submultiple of 1 (that is, 1/n, where n is a positive whole 

number), measures 2. Thus, 2 is 'άλογος, "irrational" and, by extension, unintelligible. 

Nevertheless, there are many examples of incommensurable magnitudes in mathematics 

and mathematics, we recall, is the model for true knowledge. The inescapable consequence 

of this situation – and this is the true scandal of incommensurability – is that it makes true 

knowledge gibberish. Further, even should we be able to make some kind of sense out of 

irrational relations, the demonstrations developed for rational relations would probably not 

carry over into the more general situation. But what makes mathematics mathematics is its 

method of verification by demonstration. So, once again, incommensurability struck a hard 

blow to one of the deep-seated tenets of the Pythagorean worldview. 

 What was needed then was some way of making incommensurables reasonable. It 

was exactly this that Eudoxus did with his theory of proportion. His first step was as bold as 

it was simple. He generalized the definition of lógos in the following way: 

 

A ratio is a sort of relation in respect of size between two magnitudes 

of the same kind. (Euclid, Book V, Definition 3.) 

 

This definition has been criticized as being mathematically worthless since is unnecessary 

and vague.
15

 But this criticism misses the whole point. Lógos had previously meant ratio 

between positive whole numbers; further, associated with this meaning was the assumption 

that lógos conferred intelligibility. Thus, it was quite a bold step to extend the meaning of 

lógos to relations that involved incommensurables because these were seen as 'álogos or 

                                                         
12 Euclid, Book VII, Definition 1. 
13 Euclid's definition (Definition 20, Book VII) of "proportion" also makes this clear, for numbers are said to be in 

proportion when the first is the same multiple, part or parts of the second as the third is of the fourth. That is, when 

we use the second as a unit in relation to the first, we obtain the same logos as when we use the fourth as a unit in 

relation to the third. 
14 See Euclid, Book X, Definition 1. 
15 For more details, see Heath's commentary. Indeed, many later mathematicians were uncomfortable with the new 

theory; see Palmieri (2001). 
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irrational. But it was also a quite necessary step because, without it, the whole theory of 

proportions could not get started. 

 Then, Eudoxus set out the following conditions for four magnitudes to have the 

same ratio
16

 ( ), that is, to be proportional
17

 ('ανάλογον): 

 

Let A, B, C, and D be four magnitudes and n and m be positive whole 

numbers. Then, A, B, C, and D are proportional if for every pair n, m, 

the following three conditions are satisfied: 

1. nA>mB  nC>mD 

2. nA=mB  nC=mD 

3. nA<mB  nC<mD. 

 

It is not immediately evident just exactly what these three conditions mean in practice, but a 

slight reformulation will make this clear. The conditions are, in fact, equivalent to the 

following propositions: 

4. A/B>m/n  C/D>m/n 

5. A/B=m/n  C/D=m/n 

6. A/B<m/n  C/D<m/n, 

 

where each of the implications is to be valid for all pairs, m, n, of positive whole numbers. 

To illustrate, we consider the proposition 3:1::2:1. We observe that for m/n = 3/2, we 

have 3/1>3/2, but 2/1<3/2 (that is, 23>3×1, but 22<3×1). Thus, condition 4 (condition 

1) is not satisfied and we do not have four terms in proportion. The example makes clear 

that A:B::C:D will be a proportion when, and only when, the component ratios are in 

accord with the whole fabric of rational lógos. That is because each of the three conditions 

compares these component ratios with each and every rational lógos – that is, each and 

every m/n, where m and n are positive whole numbers. 

 Now, in order for the theory to be effective, it must provide the mathematician 

with effective means for demonstrating theorems. We will illustrate both how it does so and 

how it differs from the earlier theory, by comparing the proofs of the same theorem 

according to the two different theories. The theorem in question is 

 

Theorem. x:y::z:t  x:z::y:t.  

(Proportionals are also alternately proportional.) 

 

We first give a demonstration of this theorem that is in the spirit
18

 of pre-Eudoxian, 

Pythagorean mathematics. In this proof, the variables x, y, z and t are supposed to be 

positive whole numbers. 

                                                         
16 Euclid, Book V, Definition 5. 
17 Euclid, Book V, Definition 6. 
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First Demonstration. Since x, y, z and t are in proportion, a 

submultiple of y measures x in the same way that the corresponding 

submultiple of t measures z. That is, y is decomposed into n parts, each 

part being y/n, and x is equal to m of these parts. Similarly, t is 

decomposed into n parts, each part being t/n, and z is equal to m of 

these parts. All this follows from the (pre-Eudoxian) definition of 

proportion. Thus, we have two equations: x=m(y/n) and z=m(t/n). 

Dividing equals by equals, we obtain x/z=m(y/n)/m(t/n)=y/t, which 

completes the proof. 

The following demonstration is in the spirit
19

 of the new Eudoxian mathematics. In this 

proof, the variables x, y, z and t are supposed to be positive real numbers. 

Second Demonstration. Let x/y=z/t. Let m be any positive whole 

number, then clearly x/y=mx/my. Similarly, let n be any positive whole 

number, so that z/t=nz/nt. Consequently, 

mx/my=nz/nt.          (*) 

Now, if 

1. mx>nz, (*) can be true only in case my>nt; 

2. mx=nz, (*) can be true only in case my=nt; 

3. mx<nz, (*) can be true only in case my<nt. 

Thus, by the (Eudoxian) definition of proportion, x:z::y:t. 

 

The second demonstration is clearly more complex. Since, in the case of 

incommensurables, the second term (or one of its submultiples) of a ratio does not measure 

the first and so we cannot use a simple equation to fix the first in terms of the second. 

Rather, we must compare the two terms with all rational lógoi and show that the three 

conditions of the Eudoxian definition are satisfied. Regardless of the complications, 

however, the theorem was proven according to the new methods. The same is true of all the 

most important theorems of the pre-Eudoxian theory of proportion. They all carry over into 

the more generalized setting. 

 We are now in a better position to appreciate Eudoxus' accomplishment in his 

theory of proportion. In a nutshell, he made incommensurables reasonable. That is, he 

developed mathematical techniques that enabled erstwhile irrationality to be comprehended 

intelligibly. Further, he did so in a way that must have been highly valued by the 

Pythagoreans because the new lógos is parasitic on the old lógos of positive whole numbers 

– and this in two distinct ways. First of all, as we have seen above, the theory made 

incommensurables intelligible when they were in accord with the entire fabric of the 

original lógos of positive whole numbers. That is, the new ratios have to be compared with 

all the old style ratios in order to make them intelligible. Hence, the old lógos became the 

                                                                                                                                               
18 It is in the spirit of pre-Eudoxian mathematics in that it uses the older Pythagorean conception of ratio and 

proportion. Nevertheless, we freely avail ourselves here of modern algebraical methods in order to eliminate 

irrelevant details. Euclid's treatment of this theorem is Proposition 13 of Book VII. 
19 Analogous remarks as those made in the previous note apply here. Euclid's treatment of this theorem is 

Proposition 16 of Book V. 
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measure of the new lógos. Second, the theorems of the old theory of proportion are carried 

over into the new theory by the use of more complicated proofs. For both of these reasons, 

then, the arithmetic of the natural numbers could continue to be seen as the model of true 

knowledge. The new theory partakes of the rational character of its older Pythagorean 

counterpart because it has the same mathematical structure, albeit in a more complicated 

and abstract setting. 

 

Extreme and Mean Ratio 

 According to Roger Herz-Fischler (1998), the Golden Mean was probably 

discovered by the early Pythagoreans in their investigations of the regular pentagon or the 

pentagram (starred pentagon). We, in fact, know that the early Pythagoreans investigated 

these figures intensively and Kurt von Fritz (1945) has argued persuasively that they had 

discovered incommensurability in these investigations. So the Herz-Fischler suggestion fits 

nicely into the general historical pattern. 

The name "Golden Mean" is a latter invention. The ancient Greeks referred to the 

construction as the Extreme and Mean Ratio because, when a line segment is cut in a 

certain proportion, one segment will be the geometric mean and the other will be the small 

extreme. The proportion that generates the cut is as follows: the whole segment is to the 

large part as the large part is to the small part. Thus, we have 

 

a           /      b       , 

 

where (a+b)/a = a/b. This, in turn, gives us the equation a
2
-ab-b

2
=0. Following the lead of 

our investigations up to this point, we let the small extreme be a unit (that is, b=1). This 

gives us the equation a
2
-a-1=0, whose roots are (15)/2. Since the ancient Greeks did not 

have negative numbers, we choose the positive root and, clearing fractions, obtain the 

following basic division into Mean and Extreme Ratio: 

 

1+5           /      2       . 

 

 Now, we must recall that the division of the segment given above only exhibits 

explicitly the mean and the small extreme of the defining proportion (a+b:a::a:b). When we 

write out this proportion explicitly, we obtain 3+5 : 1+5 :: 1+5: 2. Thus, it becomes 

immediately obvious that 3+5 : 1+5 are in the Extreme and Mean Ratio and that the 

process can be repeated ad infinitum thereby producing the following arithmetical flux
20

: 

 

2, 1+5, 3+5, 4+25, 7+35, 11+55, ... 

 

                                                         
20 An arithmetical flux consists of one or more seeds and a rule that generates the other elements of the flux. As a 

first approximation, the reader may think of a flux as a sequence. For more details regarding the arithmetical flux 

and its role in Pythagorean mathematics, see Erickson and Fossa (2001) or Erickson and Fossa (to appear). 
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This flux has many interesting properties. We mention here only two of them. First, the 

coefficients of the 5's are given by the Fibonacci flux
21

: 1, 1, 2, 3, 5, 8, 11, ... Second, the 

flux itself is a kind of generalized Fibonacci flux, since each new element is the sum of the 

two preceding elements. By construction, of course, any two adjacent elements in the flux 

are in Extreme and Mean Ratio, that is, letting ti be the ith term of the sequence, 

ti+1/ti=(1+5)/2. 

 The flux given in the preceding paragraph can be extended to the left by using the 

Fibonacci relationship: ti+1=ti-1+ti; hence, ti-1=ti+1-ti. This gives us 

 

..., 3-5, -1+5, 2, 1+5, 3+5, 4+25, 7+35, 11+55, ... 

 

All of the numbers in this flux are positive and its only rational member is 2. Thus, we can 

think of two as the center of the flux.
22

 

 In light of Eudoxus' new theory of proportion, it now makes sense to ask about a 

Divided Line cut in Extreme and Mean Proportion. That is, we have a line segment, x / y / y 

/ z, cut so that x:y::y:z::Golden Ratio. The first problem is to decide what numbers to put on 

this Line, since the ratio of any two adjacent numbers in the flux given above is the same as 

that of any other two adjacent numbers. Our observation that 2 can be thought of as the 

center of the flux might lead us to put 2 in the spot of the geometric mean, giving raise to 

the following Divided Line: 

 

-1+5 / 2 / 2 / 1+5. 

 

Although this seems to be an intuitively appealing solution to the problem, it must be 

remembered that 2 is the only rational member of the flux and, thus, should occupy the 

most noble position in the Divided Line. That position is that of the small extreme – the far 

right hand position by our convention. Doing so gives us what we will refer to as the 

Golden Line: 

 

3+5 / 1+5 / 1+5 / 2 . 

 

 The Golden Line belongs to a class of Divided Lines that is wider than those that 

we have previously encountered. Thus we may ask whether the analogue of the Divided 

Line Algorithm applies to this wider class of Divided Lines. The Following result shows 

that it does: 

The General Algorithm of the Divided Line. (i) The sum of the 

elements of a Divided Line is to the sum of the large extreme and the 

                                                         
21 For more on the Fibonacci flux in Pythagorean arithmetic, see Erickson and Fossa (to appear). 
22 There are only two distinct solutions to the equation a2=a+1. The solution a=1-5, b=2 generates the sequence 

..., -4-25, 3+5, -1-5, 2, 1-5, 3+5, 4-25, ... This sequence can be thought of as being centered on 2 and has 

ti+1/ti=(1-5)/2. Nonetheless, the terms in this sequence are alternately positive and negative. When we think of the 
numerical values as representing the lengths of line segments, this solution is extraneous since it does not satisfy 

the original word problem: "The whole is to the large part as the large part is to the small part." 
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mean as this sum is to the large extreme. (ii) The sum of the elements 

of a Divided Line is to the sum of the small extreme and the mean as 

this sum is to the small extreme. 

To show this, it will suffice to show that the middle terms of the Line generated is the 

geometric mean of the extremes. Thus, we are given that x / y / y / z is a Divided Line, so 

that y
2
=xz. Part (i) of the General Algorithm produces the Line x+2y+z / x+y / x+y / x. It is 

now easy to show that x+y is the geometric mean of the extremes on this Line: 

(x+2y+z)x = x
2
+2xy+xz 

          = x
2
+2xy+y

2
 

          = (x+y)(x+y). 

Part (ii) of the General Algorithm produces the Line x+2y+z / y+z / y+z / z. Using once 

again the fact that y
2
=xz, we have 

(x+2y+z)z = xz+2yz+z
2
 

          = y
2
+2yz+z

2
 

          = (y+z)(y+z). 

Thus, the General Algorithm is correct. 

 In order to see how the General Algorithm compares with the original Algorithm 

of the Divided Line, we will investigate two special cases: repeated application of part (i) of 

the algorithms and repeated applications of part two of the algorithms.
23

 Recalling that 

Primitive Lines have the form n
2
 / nm / nm / m

2
, where n and m are natural numbers, prime 

to each other, we will set out the n, m values beside the Line generated by them. We start 

by showing the first few lines of the case in which part (i) of the algorithms is iterated: 

 

     Primitive Lines          General Lines 

n
2
 / nm / nm / m

2
    n  m                                 x / y / y / z 

    1 / 1 / 1 / 1          1  1                 3+    5 /   1+    5 /   1+   5 /    2 

    4 / 2 / 2 / 1          2  1                 7+  35 /   4+  25 /   4+  25 /   3+   5 

    9 / 6 / 6 / 4          3  2               18+  85 / 11+  55 / 11+  55 /   7+  35 

    25 / 15 / 15 / 9    5  3               47+215 / 29+135 / 29+135 / 18+  85 

    64 / 40 / 40 / 25  8  5             123+555 / 76+345 / 76+345 / 47+215 

 

In the case of the Primitive Lines given above, it is immediately evident that the generators, 

n and m, form Fibonacci sequences (the n values form a truncated Fibonacci sequence, in 

that the first 1 is missing). This sequence reappears in the General Lines, albeit in a zigzag 

fashion. Let mi be the coefficient of the 5 in the expression for mean on the ith line and let 

fi be the coefficient of the 5 in the expression for the large extreme on the ith line. Then, 

m1, f1, m2, f2, m3, f3, ... is the Fibonacci sequence. The sequence is also found in zigzag 

fashion in the coefficients of the small extreme (denoted by ei) and the mean: (e1), m1, e2, 

m2, e3, m3, ... In this case, the sequence is augmented in that we have the extra term e1=0. 

 Thus, there is a kind of similarity in the two fluxes of Lines shown above that 

could be interpreted as was Eudoxus' theory of proportion: the mathematical structure of 

                                                         
23 For more details about some special cases of Primitive Lines, see Erickson and Fossa (to appear). 
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the flux of General Lines is parasitic on that of the Primitive Lines.
24

 That said, however, 

we must also note an important disanalogy. In the case of the Primitive Lines, each new 

member of the flux is a new Primitive Line. In the case of these General Lines, in contrast, 

each new member of the flux is a multiple of the preceding member. In fact, each new 

member is (3+5)/2 times the preceding member. Thus, we have the following situation: 

 

7+35 / 4+25 / 4+25 / 3+5 = (3+5)/2 × 3+5 / 1+5 / 1+5 / 2 

18+85 / 11+55 / 11+55 / 7+35 = (3+5)/2 ×7+35 / 4+25 / 4+25 / 3+5 

        = [(3+5)/2]
2
 × 3+5 / 1+5 / 1+5 / 2 

47+215 / 29+135 / 29+135 / 18+  85 = (3+5)/2 ×18+85 / 11+55 / 11+55 / 7+35 

              = [(3+5)/2]
3
 × 3+5 / 1+5 / 1+5 / 2 

etc. 

 

Whether this would have been seen as a new mathematical structure, interesting in its own 

right, or whether it would have been seen as defective in comparison with the structure of 

the Primitive Lines is open to question. 

 We now turn to the special case, in which part (ii) of the two algorithms is iterated. 

The first few lines of this case are: 

     Primitive Lines       General Lines 

n
2
 / nm / nm / m

2
    n  m                             x / y / y / z 

    1 / 1 / 1 / 1          1  1             3 +   5 /   1+5 /   1+5 / 2 

    4 / 2 / 2 / 1          2  1             7 + 35 /   3+5 /   3+5 / 2 

    9 / 3 / 3 / 1          3  1           15 + 55 /   5+5 /   5+5 / 2 

    16 / 4 / 4 / 1        4  1           27 + 75 /   7+5 /   7+5 / 2 

    25 / 5 / 5 / 1        5  1           43 + 95 /   9+5 /   9+5 / 2 

    36 / 6 / 6 / 1        6  1           63+115 / 11+5 / 11+5 / 2 

In contrast to the previous case, this case generates new General Lines; consequently, only 

the first is the Golden Line. Both the Primitive Lines and the General Lines exhibit notable 

patterns. In fact, the patterns allow us to dispense with the rule of generation because we 

can continue to fill out the table by following these patterns. For the Primitive Lines, the 

pattern is especially simple. The generators, n, are just the sequence of natural numbers and 

m is constant, being always 1. Thus, the large extreme of the ith Line is just i
2
, while its 

mean is i and its small extreme is 1. For the General Lines, the small extreme is the 

constant 2. The whole number part of the means form the sequence of odd numbers and the 

coefficient of the 5's is always 1. The coefficients of the 5's in the large extreme again 

form the sequence of the odd numbers. The pattern in the whole number part of the large 

extremes is not as easy to see, but, if we subtract 3 (the starting point) from each of these 

numbers, it becomes obvious that we are proceeding by multiples of 4. In fact, we are 

adding multiples of 4 in their natural order, thus we can use the triangular numbers (1, 3, 6, 

                                                         
24 In fact, by looking at a more abstract flux, we could exhibit the reason why the Fibonacci sequence appears in 

both fluxes given above. We do not do so because it does not seem relevant to the argument. 



The Divided Line and the Golden Mean 

RBHM, Vol. 5, no 9, p. 59-77, 2005 75 

10, 15, 21, ...) to express the result. Let wi be the whole number part of the large extreme on 

the ith Line and let ti be the ith triangular number. Then, wi+1=3+4ti. 

 This case shows, even more clearly than the previous case, that irrational 

magnitudes can form beautiful patterns that result in intelligible mathematical structures. It 

also shows that the intelligibility of this structure is parasitic on that of the natural numbers, 

since the basic patterns are here all set out in terms of the natural numbers (constants, odd 

numbers and triangular numbers). 

 

Conclusion: The Analogous Line 

 Let us step back for a moment to review Plato's development as a thinker. This 

will help us to see how proportion became analogy and what this meant for Plato's 

philosophy. 

 The whole point of the early dialogues was to find universal definitions. The 

particular definitions sought after – virtue, for example – and much of the give and take of 

these dialogues reveals the strong influence of Socrates on the youthful Plato. Nevertheless, 

the actual procedure used for trying to find these definitions, eristic, was a common pastime 

in Classical Athens. Eristic itself, as a procedure, has a rather mathematical air about it. One 

of the contenders proffers a definition and his adversary tries to come up with a 

counterexample. If a counterexample is found, the first contender reformulates his 

definition to meet the objection. Then his adversary tries to come up with a new 

counterexample. The process continues until no new counterexample is found or one of the 

contenders tires of playing word games. There seems, however, to be a growing awareness 

in these early dialogues, that eristic, when taken seriously, can be a dialectical process that 

leads one to the truth. 

 The middle period of Plato's thought is characterized by the logical forms. These 

are hypostatizations of universal terms – mostly common nouns – that are supposed to 

account for our knowledge of what is really real. Plato eventually saw that there were 

apparently insuperable difficulties in this position and, thus, abandoned it. 

 In his third and final period, Plato accepted the Pythagorean thesis that the lógos,
25

 

that is the intelligibility, of the world is due to its mathematical structure. The role played 

by the logical forms in the middle period is now given to the mathematical forms and their 

instantiations in the material world as the cosmological forms. Then, following Eudoxus' 

new theory of proportion, he tries to think the lógos as generalized. Mathematical 

knowledge itself, however, is hypothetical ("if..., then...") and needs a point of departure. 

This is given by intuition, a mystical experience that cannot be had on demand, but that can 

be prepared for through dialectic thought. 

Is there a connection between universal definition, logical forms of universals and 

generalized lógos, other than the very universality? It is clear that Plato is searching for true 

knowledge. The Parmenideian critique implied that we cannot have true knowledge of 

particulars and, therefore, the youthful Plato looked to universal terms. If these are to be 

                                                         
25 Lógos is a meaning rich word. In ancient mathematical contexts it meant ratio and we have used it in that sense 

through most of this article. Here, however, we use it in its more philosophical sense of intelligibility. 



Fossa & Erickson 

RBHM, Vol. 5, no 9, p. 75-93, 2005 76 

other than empty words, however, they must refer to something. This led Plato on to his 

middle period, the one in which Plato, in Aristotle's phrase, was the "friend of the forms". 

Finally, the search for true knowledge led Plato to the Pythagoreans. Mathematics 

seemed indeed to be the prototype of true knowledge. As Plato began to investigate the rich 

structural relations of such mathematical theories as that of the Divided Line, he must have 

become more and more convinced that mathematics is the key to rational intelligibility. But 

the old Pythagorean doctrine of reducing all being to relations between numbers was 

ultimately unsatisfying. Something more was needed. 

Plato established the Academy and took on, as an associate, or perhaps co-founder, 

the mathematician Eudoxus. While at the Academy,
26

 Eudoxus developed his new theory of 

proportion, extending lógos from whole numbers to the realm of erstwhile irrational 

magnitudes. This enabled Plato to develop, in two ways, a much more satisfying version of 

Pythagoreanism than had been done before. 

First of all, Eudoxus' theory of proportion permitted the investigation of 

mathematical structures, like General Divided Lines, in which incommensurable quantities 

were admitted. The resulting structures were beautiful and intelligible and, thus, a truly 

possible part of the world. But, it also permitted Plato, in his relentless effort to think the 

universal, to use the segments of the Divided Line to represent, not only number and those 

strange incommensurable magnitudes, but also ontological and epistemological categories. 

Thus, 'ανάλογον (proportion) began to move closer to what we now call analogy. More 

importantly, however, it meant that these categories could be interpreted as having the 

mathematical structure inherent in the Divided Line itself. 'Análogon, therefore, shows that 

mathematics is the lógos of the world, by revealing the mathematical structure hidden in the 

phenomena of the world. Through this understanding of analogy, Plato makes mathematics 

the model of intelligibility by imposing a mathematical model of discourse on non-

mathematical contexts. We posit that the first step in this direction was the recognition, due 

to the structures developed from the Golden Line, that a non-arithmòs lógos can be 

beautiful. 

The second way in which Eudoxus' new theory of proportion allowed Plato to 

develop a deeper and more satisfying Pythagoreanism was the way in which the new lógos 

was seen to be parasitic on the old arithmòs lógos. As we have seen, this was true not only 

for Eudoxus' own theory, but also for the interesting structures forthcoming from the 

Golden Line. This allowed Plato to see the world as consisting of a basic reality from which 

other realities emerged in dependently hierarchical structures. The Divided Line itself 

depicts this hierarchical structure, but it is doubtlessly only the overall structure, from 

which most of the details have been omitted.
27
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