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§0. Introduction 

 

Both Charles Sanders Peirce (1839–1914) and Bertrand Russell (1872–1970) held that 

Euclid’s proofs in geometry were fundamentally flawed, and based largely on mathematical 

intuition rather than on sound deductive reasoning. They differed, however, as to the role 

which diagramming played in Euclid’s demonstrations. Specifically, whereas Russell 

attributed the failures on Euclid’s proofs to his reasoning from diagrams, Peirce held that 

diagrammatic reasoning could be rendered as logically rigorous and formal. In 1906, in his 

manuscript “Phaneroscopy” of 1906, he described his existential graphs, his highly iconic, 

graphical system of logic, as a moving picture of thought, “rendering literally visible before 

one’s very eyes the operation of thinking in actu”, and as a “generalized diagram of the 

Mind” (Peirce 1906; 1933, 4.582). More generally, Peirce personally found it more natural 

for him to reason diagrammatically, rather than algebraically. Rather, his concern with 

Euclid’s demonstrations was with its absence of explicit explanations, based upon the laws 

of logic, of how to proceed from one line of the “proof” to the next. This is the aspect of his 

criticism of Euclid that he shared with Russell; that Euclid’s demonstrations drew from 

mathematical intuition, rather than from strict formal deduction. 

                                                           
1 The esteemed scholar and historian of logic Dr. Irving H. Anellis passed away on the 15th of July 2013. We are 

proud to publish as posthumous this paper that is one of the last works of this outstanding scholar. Paper submitted 
as an invited plenary lecture given during the 10th National Seminar on the History of Mathematics at UNICAMP 

in Campinas, SP, Brazil, on March, 2013. 
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§1. The Problem 

 

For some two thousand years, until well into the 19th century, Euclid’s Elements were 

putatively conceived as providing the most perfect example of rigorous deductive 

reasoning. In Peirce’s (1892) words: “In the pre-Lobachevskian days, elementary geometry 

was universally regarded as the very exemplar of conclusive reasoning carried to great 

lengths. It had been the ideal of speculative thinkers in all ages.” Plato is supposed, for 

example, to have inscribed over the gate of his Academy: “Let no one ignorant of geometry 

enter” — . There was, however, a recognition, almost 

from the outset, that there were difficulties involving Euclid’s fifth, parallel postulate. 

Euclid himself apparently recognized that his fifth postulate was somehow of a 

different character than the remainder of the postulates provided in his axiom system, since 

he avoided its use except in extremity. It remained untouched through Euclid’s proofs of his 

first twenty propositions. From Euclid onward, mathematicians sought to provide a proof, 

within Euclid’s axiomatic system, of the parallel postulate. In contemporary terms, they 

sought to demonstrate that the parallel postulate is independent in Euclid’s axiomatic 

system. No one, however, considered the possibility that the parallel postulate is 

inconsistent, and Immanuel Kant (1724–1804), for example, held that the only possible 

geometry is a geometry in which the parallel postulate holds, that is, that the only possible 

geometry is Euclidean geometry, and that space is Euclidean.2 

  Thus, efforts were undertaken to make the minor repairs that would rescue Euclid 

from this one special and particular difficulty. Thus, for example, we have Proclus 

Diadachos (411–485 C.E.), in his commentary on Euclid, who wrote (see Proclus 1970, pp. 

150–151) that: 

 

“This [fifth postulate] ought even to be struck out of the Postulates 

altogether; for it is a theorem involving many difficulties which Ptolemy, 

in a certain book, set himself to solve, and it requires for the 

demonstration of it a number of definitions as well as theorems. And the 

converse of it is actually proved by Euclid himself as a theorem. It may be 

that some would be deceived and would think it proper to place even the 

assumption in question among the postulates as affording, in the 

lessening of the two right angles, ground for such an instantaneous belief 

that the straight lines converge and meet. To such as these Geminus 

correctly replied that we have learned from the very pioneers of this 

science not to have any regard to mere plausible imaginings when it is a 

question of the reasonings to be included in our geometrical doctrine. For 

Aristotle says that it is as justifiable to ask scientific proofs of a 

rhetorician as to accept mere plausibilities from a geome-ter; and 

Simmias is made by Plato to say that he recognizes as quacks those who 

                                                           
2 See. e.g. (Anellis 1991).  
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fashion for themselves proofs from probabilities. So in this case the fact 

that, when the right angles are less-ened, the straight lines converge is 

true and necessary; but the statement that, since they converge more and 

more as they are produced, they will sometime meet is plausible but not 

necessary, in the absence of some argument showing that this is true in 

the case of straight lines. For the fact that some lines exist which 

approach indefinitely, but yet remain non-secant, although it seems 

improbable and paradoxical, is nevertheless true and fully ascertained 

with regard to other species of lines [for example curves like the 

hyperbola that has asymptotes]. May not then the same thing be possible 

in the case of straight lines that happens in the case of the lines referred 

to? In-deed, until the statement in the Postulate is clinched by proof, the 

facts shown in the case of other lines may direct our imagination the 

opposite way. And, though the controversial arguments against the 

meeting of the straight lines should contain much that is surprising, is 

there not all the more reason why we should expel from our body of 

doctrine this merely plausible and unrea-soned (hypothesis)?  

It is then clear from this that we must seek a proof of the present theorem, 

and that it is al-ien to the special character of Postulates. But how it 

should be proved, and by what sort of argu-ments the objections taken to 

it should be removed, we must explain at the point where the writer of the 

Elements is actually about to recall it and use it as obvious. It will be 

necessary at that stage to show that its obvious character does not appear 

independently of proof, but is turned by proof into matter of knowledge.” 

 

 

 

 There is the 13th-century example occurs in the Perspectiva (ca. 1274) of Witelo 

(also Erazm Ciolek Witelo; Witelon; Vitellio; Vitello; Vitello Thuringopolonis; Vitulon; 

Erazm Ciołek; ca. 1230–ca. 1280)3; and, most famously Giovanni Saccheri’s (1667–1733) 

employment in his (1733) In Euclides ab Omni Nævo Vindicatus to rescue the fifth 

postulate in of the consequentia mirabilis that he claimed to have rediscovered and 

presented in his popular textbook (1692) Logica demonstrativa. Saccheri’s Logica had the 

intentions of applying what he considered were the strict standards of geometrical proofs to 

logic and of reducing the number of “first principles” to a minimum. His logic is the 

syllogistic of Aristotle, and his approach is deductive, following the methodology of 

Euclid’s Elements. Saccheri used the consequentia mirabilis to “prove” that, if Euclid’s 

parallel postulate is false, then would yield a contradiction. He wrote of the consequentia 

mirabilis (1733; see Saccheri 1920, p. xxii):4 

                                                           
3 See (Unguru 1978) and (Witelo 1991). 
4 See (Euclid 1926, vol. 2, pp. 397–398) for Euclid’s proof, with T. L. Heath’s exposition at (Euclid 

1926, vol. 2, pp. 398–399). For discussions, see also, e.g. (Angelelli 1975; 1995), (Dou 1970), and 

(Hoormann 1976).  
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“Now in fact we may conceive another way of proceeding, and as I think 

a beautiful way, by which I demonstrate the same truths without the 

assistance of the postulate. I shall proceed thus: I shall assume the 

contradictory of the proposition to be demonstrated and from it I shall 

elicit directly the proposition to be proved. This method of proof was used 

by Euclid in Book IX, Proposition 12”. 

 

 Using the Saccheri quadrilateral, 

 
Figure 1. 

 

Saccheri examined three possible cases: the Hypothesis of the Right Angle (where angle C 

is a right angle and the summit angles are = 90°), the Hypothesis of the Acute Angle (where 

angle C is an acute angle and the summit angles are < 90°), and the Hypothesis of the 

Obtuse Angle (where angle C is an obtuse angle and the summit angles are > 90°), he 

attempted to disprove both the Hypothesis of the Acute Angle and the Hypothesis of the 

Obtuse Angle, and by elimination thereby prove the Euclid’s Parallel Postulate, since the 

three are incompatible. His first step was to prove that indeed the three hypotheses are 

mutually exclusive. He easily disproved the Hypothesis of the Obtuse Angle, since it 

violates Euclid’s postulate that a straight line is of infinite length. He next attempted to also 

disprove the Hypothesis of the Acute Angle. Along the way, he proved, among other 

characteristics of the three resulting geometries, that under the Hypothesis of the Acute 

Angle the sum of the angles of a triangle are less than 180 degrees; under the Hypothesis of 

the Right Angle, equal to 180 degrees, and, Hypothesis of the Obtuse Angle, greater than 

180 degrees. It was left to later geometers to show that Saccheri had failed, since 

subsequent analysis of his arguments revealed that, with respect to his treatment of 

Hypothesis of the Obtuse Angle, his reasoning was sloppy and in parts incorrect. 

(Saccheri’s argument runs: ∆ABC ≅ ∆BAC (where both sides and the angle are included). 

Therefore AC = BD  ∆ADC ≅ ∆BCD / ∴ ADC = BCD.)  

 As (Coolidge 1963, p. 69) said of Saccheri, “this careful logician undertook to prove 

the correctness of Euclid’s postulate by showing that when it is replaced by another, a 

contradiction is sure to arise.” By showing that the 

first four Euclidean postulates together with the negation of the fifth postulate yields a 

contradiction, Saccheri would have proven that the first four postulates, together with the 

fifth postulate, is a valid system. This is precisely what Saccheri thought he did — 

vindicated Euclid by proving that the assumption of the negation of the fifth postulate 
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together with the first four postulates yields a contradiction. In particular, he considered an 

isosceles birectangle ABDC, a quadrilateral in which AC = BD and angles A and В are right 

angles. Using only the first four postulates and the first twenty-eight theorems of Euclid 

which may be derived from them without the aid of the fifth postulate, Saccheri easily 

showed that angles С and D are equal to each other. Using an assumption invalid under the 

obtuse angle hypothesis (that straight lines are infinitely long), but without the aid of the 

fifth postulate, Saccheri was able to eliminate the possibility that angles С and D are obtuse. 

But he was unable to eliminate the possibility that they 

might be acute. To do so would have in fact required the fifth postulate. The best that 

Saccheri could do was employ some questionable characterizations of infinity to derive an 

unconvincing and irrelevant contradiction to eliminate the possibility that the angles are 

acute. (Eves 1981, p. 69) has gone so far as to express his opinion that Saccheri himself was 

not fully convinced by his argument. (Dou 1970) gives a detailed analysis of Saccheri’s 

arguments and discusses Saccheri’s possible influence on the subsequent development of 

non-Euclidean geometry.) 

 Most of those of Saccheri’s and Kant’s contemporaries working on the parallel 

problem, like Saccheri himself, in fact really thought that they had shown that the fifth 

postulate does follow from the remainder of Euclid's axioms, and all of them were 

attempting, like Saccheri, to find such a proof. 

 These problems, and in particular efforts to demonstrate Euclid’s parallel postulate, 

led ultimately to the discovery and recognition, if not immediately and unconditionally, of 

non-Euclidean geometries, sealed by the relative consistency proof of Eugenio Beltrami 

(1835–1900) in his (1868) “Saggio di interpretazione della geometria non-euclidea”, 

demonstrating that, Beltrami demonstrated that non-Euclidean geometry (in the particular 

instance hyperbolic geometry) is consistent if non-Euclidean geometry is consistent.5 

Beltrami, that is, was able to use Saccheri’s 

proof of the independence of the parallel postulate to develop the concept of relative 

consistency proof for non-Euclidean geometry, showing that non-Euclidean geometries are 

inconsistent only if Euclidean geometry is inconsistent, or conversely, that if Euclidean 

geometry is consistent, then so are non-Euclidean geometries. But to impute to Saccheri 

himself — or to Kant — the view that Saccheri proved that non-Euclidean geometries are 

possible,6 is anachronistic, and thus a misunderstanding of the history of geometry. Under 

these circumstances, it is difficult to believe that Russell could have concluded that Kant 

could have believed in the possibility of non-Euclidean geometries. Kant came as close to 

the subject of non-Euclidean 

                                                           
5 (Bonola 1955) remains the most accessible source for the chief publications of Bolyai and 

Lobachevskii in non-Euclidean geometry in English translation, and (Sommerville 1911) the standard 

bibliography of works in non-Euclidean geometry up to its publication. 
6 As (Watling 1990) did. This argument is based upon the debatable supposition (compare (Martin) 

and (Fang) that Kant was not ony aware of Saccheri’s work, indeed corresponded with him, but 

moreover held with Saccheri proved exactly the opposite of what he in fact thought and claimed to 

have proven, namely that denial of Euclid’s parallel postulate leads to a contradiction. 
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 Against this historical background, let us return to consideration of Peirce’s and 

Russell’s views of Euclid and his work. We can attend to their view in part with a 

consideration of their responses to Kant’s philosophy of mathematics and philosophy of 

logic, which may be briefly summarized, with respect to geometry by the proposition that 

the propositions of geometry to be à priori synthetic, and that time and space are absolutes, 

conditions of the understanding for the possibility of perception.  

 

§2. Russell on Euclid.  

 

In An Essay on the Foundations of Geometry, Russell (1897, pp. 54–63) argued that the 

development of “metageometry”, i.e. the axiomatic foundations of (Euclidean and non-

Euclidean) geometries, has shown that Kant’s argument for the apodeiciticity of Euclidean 

geometry breaks down. But Russell did not accept either the position that non-Euclidean 

geometries are necessary (in any Kantian sense). Instead, Russell (1897, p. 6) concluded 

that only those axioms which are common to both Euclidean and non-Euclidean geometries 

are à priori, whereas the axioms specific to Euclidean geometry are “wholly empirical”, as 

are those axioms specific to the various non-Euclidean geometries. Moreover, the claim 

(made by John Watling (1990) that Kant was unaware of the possibility of non-Euclidean 

geometries is unfair to the editor also with respect to specific arguments made by Russell. 

In An Essay on the Foundations of Geometry (1897, pp. 54-63), Russell argued that the 

development of “metageometry”, i.e. the axiomatic foundations of (Euclidean and non- 

Euclidean) geometries, has shown that Kant’s argument for the apodeiciticity of Euclidean 

geometry breaks down. But Russell did not accept either the position that non-Euclidean 

geometries are necessary (in any Kantian sense). Instead, Russell (1897, p. 6) concluded, 

contrary to Watling’s (and Gottfried Martin’s, et aliia) interpretation of Kant's position, 

that only those axioms which are common to both Euclidean and non-Euclidean geometries 

are apriori, whereas the axioms specific to Euclidean geometry are “wholly empirical,” as 

are those axioms specific to the various non-Euclidean geometries.  

 This view was reinforced by Russell’s (1898) reply to Louis Couturat’s (1868–1914) 

(1898) review of the Essay, in which Russell first accepts Couturat’s assertion that 

Russell’s argument in the Essay for the empirical character of Euclidean geometry is weak 

but then defends the empiricality of Euclidean geometry with new arguments. Russell 

(1902, p. 673) made the point much more clearly in his Encyclopedia Britannica article on 

non-euclidean geometry that, although Kant’s view that geometry is synthetic permits the 

possibility that there might be non-euclidean geometries, saying that “Kant maintained [that 

there] is à priori ground for excluding all or some of the non-Euclidean spaces.” Whether 

Kant knew of Saccheri’s work or knew Saccheri remains an open question. In any case, 

Kant did not entertain the possibility of non-Euclidean geometries. Carl Friedrich Gauss 

(1777–1855), who worked on the problem of the parallel postulate and became convinced 

that alternatives were possible, but decided not to publish for fear of his reputation, was 

able to convince János Bolyai (1802–1860) to publish his (1832) result, which subsequently 

became the first instance of a published presentation of a non-Euclidean geometry. 

(Russell’s (1897, p. 7) assertion that Adrien Marie Legendre (1752–1833) was the first to 
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refuse to accept the parallel postulate without a proof, and the first to attempt to deduce it 

from the others, is false.7)  Bolyai wrote to his father in 1823 that “I have discovered things 

so wonderful that I was astounded ... out of nothing I have created a strange new world.” It 

took two more years before he had it completely written out. His essay on non-Euclidean 

geometry eventually appeared as a twenty-four-page appendix to his father’s book, 

Tentamen juventutem studiosam in elementa matheseos purae. Gauss, corresponded with 

Kant, and Gauss went so far as to privately express the view that, when it came to his 

philosophy of mathematics, Kant was hopelessly muddled. He wrote (1860-65, vol. IV, p. 

337), in his now infamous letter of November 1, 1844 to the astronomer Heinrich Christian 

Schumacher (1780–1850), that “you see the same sort of [mathematical incompetence] in 

the contemporary philosophers.... Don’t they make your hair stand on end with their 

definitions? ...Even with Kant himself it is often not much better; in my opinion his 

distinction between analytic and synthetic propositions is one of those things that either run 

out in a triviality or are false.”  

 Nikolai Ivanovich Lobachevskii’s (1792–1856) non-Euclidean geometry followed. 

The “imaginary” geometry or “pan-geometry” of Lobachevskii first appeared in print in his 

multi-part “Elements of Geometry” (1829-30); his “Géometrie imaginaire” (1837) and its 

Russian original (1835) is a sustained and detailed account, and his Geometrische 

Untersuchungen zur Theorie der Parallellinien. (1840) and (1855) Pangéométrie, his best 

known works, being summaries. All straight lines which in a plane go out from a point can, 

with reference to a given straight line in the same plane, be divided into two classes, viz., 

into cutting and non-cutting. The boundary lines of the one and the other class of those lines 

will be called parallel to the given line. Thus Lobachevskii replaced Euclid’s fifth postulate 

with the postulate that asserts that there exist two lines parallel to a given line through a 

given point not on the line. He went on to develop various trigonometric identities for 

triangles which held in this geometry, showing that as the triangle became small the 

identities tended to the usual trigonometric identities. The pangeometry is a general system 

in which Euclid’s fifth postulate does not necessarily hold, and Euclidean geometry is 

treated as a special case. 

 By the time Peirce and Russell were working, mathematicians, if not all 

philosophers, seriously considered the possibility that Euclid’s fifth postulate need not 

necessarily hold, and that alternative, non-Euclidean geometries, could not only be 

constructed, but could had to be given as both empirical and formal status.8 One of the aims 

of Russell’s Essay on the Foundations of Geometry was to explore, within a neo-Kantian 

framework, meta-geometry as the set of most basic axioms necessary and sufficient for the 

                                                           
7 Adrien-Marie Legendre (1752–1833) spent some twenty years working on the problem of parallels 

and his results are scattered through the several editions (from 1794 to 1823) of his (1794) Éléments 

de Geometrìe. These results were finally brought together in Legendre’s (1833) Reflexions sur 

différentes manières de démontrer la théorie des parallèles ou le théorème sur la somme des trois 

angles du triangle, Mémoires de l’Académie royale des Sciences de l’Institute de France ХП (1833), 

to which Russell referred. 
8 See (Gray 2007) for a history of geometry in the 19th century and (Rosenfeld 1988) for a general 

history of non-Euclidean geometry. 
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possibility of all geometries, Euclidean and non-Euclidean. In pangeometry or 

metageometry, that is, in the abstract geometry that admits the possibility of both Euclidean 

geometry and non-Euclidean geometries, we can classify three types of space: Given a line 

l and a point P not on the line, the elliptic parallel property contrasts with the Euclidean and 

hyperbolic parallel properties: 

 

Elliptic: any line through P meets l in just one point (Bolyai). 

Euclidean (parabolic): just one line through P may be found, which does not meet l 

(Euclid). 

Hyperbolic: more than one line through P may be found, which do not meet l 

(Lobachevskii). 

 

Neither Bolyai nor Lobachevskii were able to arrive at a proof of the consistency of their 

respective non-Euclidean geometries, however, any more than mathematicians since Euclid 

could prove the consistency of Euclid’s. This is what led Beltrami to devise his relative 

consistency proof of 1868, demonstrating that, if Euclid’s system was consistent, then so 

was Lobachevskii’s. Meanwhile, Bernhard Riemann (1826–1866) in his 

Habilitationsvortag “Über die Hypotheses, welche der Geometrie zu Grunde liegen” (read 

in 1854, published in 1868), reformulated the whole concept of geometry which he saw as a 

space with enough extra structure to be able to measure things like length. One of his tasks 

in this lecture was to deal with the issue of how to define an n-dimensional space, what 

today we call a Riemannian space. 

§3. Peirce on Euclid 

 

Turning specifically to the details of their respective criticisms of Euclid, we find Peirce, in 

his (1892) review, “The Non-Euclidean Geometry”, of the English translation 

(Lobachevskii 1891; 1892) by George Bruce Halsted (1853–1922) as of the second (1887) 

edition Lobachevski’s Geometrische Untersuchungen zur Theorie der Parallellinien, Peirce 

described Euclid’s Elements as “unmathematical”, writing in his review that: “The truth is 

that elementary geometry, instead of being the reflection of human reasoning, is riddled 

with fallacies, and is thoroughly unmathematical in its development. It has in the same 

measure confused all mathematics, by leaving unnoticed most of the really fundamental 

propositions, while raising to an undue rank certain others almost arbitrarily selected….”  

In the manuscript “The Non-Euclidean Geometry Made Easy”, dating from the late Spring 

of 1890 (1890; see Peirce 2010a, pp. 25–29) considered that Euclidean intuition may be 

misleading from the logical perspective. He notes (2010a, p. 25) that: “We have an a priori 

or natural idea of space, which by some kind of evolution has come to be very closely in 

accord with observations,” and immediately offers a caveat: “But we find in regard to our 

natural ideas, in general, that while they do accord in some measure with fact, that by no 

means do so to such a point that we can dispense with correcting them by comparison with 

observations.” Thus, Peirce would seem to be in agreement with that part of Russell’s 

position in the Foundations of Geometry (1897, p. 6) according to which Euclidean 
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geometry is empirical, Peirce offering the following case (2010a, p. 25), working with the 

diagram: 

 

C     D 

 

A     B 

 

A     B 

                                                                            O 

A      B 
 

Figure 2. 

Given a line CD and a point O. Our natural (Euclidean) notion is that 

1st there is a line AB through O in the plane OCD which will not meet CD 

at any finite distance from O. 

2nd that if any line AB of AB through O in the plane OCD be inclined 

by any finite angle, however small, to AB, it will meet CD at some finite 

distance from O. 

 

and asking (2010a, p. 25) whether this natural notion is “exactly true”. His multi-level reply 

(2010a, pp. 25–26) is largely empirical, based upon epistemological, evolutionary, and 

statistical concerns, among the six listed being the admission: “It may be true, perhaps. But 

since the chance of this is as 1: or 0/1, the logical presumption is, and must ever remain, 

that it is not true,” and contending that the first proposition, that it is simply uncertain, is 

sufficient to admit the possiblity of non-Euclidean geometry, explaining (2010a, p. 26) 

depending upon whether one denies either the 1st or 2nd proposition, one of two non-

Euclidean geometries, either Lobachevskii’s hyperbolic geometry or Bolyai’s elliptical 

geometry. He illustrates by way of projective geometry, viewing the plane from an angle 

and noting that the parabolically parallel lines will either intersect at the origin only, or at 

some point at infinity. It is not surprising, therefore, that Peirce should have also made 

efforts at treating geometry metrically by introducing the absolute synthetically (see, e.g. 

1883?, the manuscript “Non-Euclidean Geometry”, of circa 1883 or later). Indeed, in “The 

Logic of Continuity” (see Peirce 2010b, p. 181), he calls elementary geometry “nothing but 

the introduction to geometrical metric, or the mathematical part of the physics of rigid 

bodies.” 

 Peirce essential point is that, although the true geometry, whether Euclidean or non-

Euclidean, is the actual geometry of space, is an empirical question, the construction of any 

of these possible geometries is possible from application of sound logical procedures and 

mathematical reasoning that has already been developed, such as projective geometry. In 

the manuscript “The Axioms of Geometry” of Spring 1873 (Peirce 1986, pp. 189–190), for 

example, Peirce offers five axioms for a general three-dimensional geometry:  



Irving Anellis 

RBHM, Vol. 19, no 37, p. 78-94, 2019 88 

 

 1. All points of space have the same properties. 

 2. All pairs of points have the same properties. 

 3. Space has three dimensions. 

 4. Space permits parallel motion. 

 5. Space permits rotation. 

 

Clearly, axiom 4, in permitting, but not requiring, parallel motion, is tantamount to 

permitting Euclidean and non-Euclidean geometries. Peirce adds, in discussing his fourth 

axiom, that geometry provides a means for determining whether motion is parallel. His 

corollary to the second axiom, that the sum of the three angles of a triangle is equal to two 

right angles adds the condition that this is the case because unless different lengths have 

different properties, a condition that would appear to open at least the possibility of the 

existence of elliptical and/or hyperbolic angles. Peirce’s fifth axiom is the counterpart to 

Russell’s (1897, pp. 149–160) Axiom of Free Mobility for metrical geometry, which allows 

pointwise transformations without loss of congruity. 

  For Charles Peirce, following on his father, Benjamin Peirce’s (1809–1880) (1870) 

definition of mathematics as the science which draws necessary conclusion, mathematics 

consequently deals with hypotheses, and these hypotheses are, for Charles Peirce (ca. 

1895), mental creations.  

 What emerges in Peirce’s conception of mathematical reasoning. Cornelis De Waal 

(2013, p. 28) has noted that mathematical reasoning for Charles Peirce, presumably having 

geometry specifically in mind, “includes much more than giving proofs. Reducing 

mathematics to demonstration as Peirce sees Euclid do in the Elements, leaves out the most 

important aspects of mathematical reasoning: construction, observation, experiment, 

abstraction, and generalization.” In short, for Peirce, according to De Waal, proof is what 

logically validates our geometrical intuition and experience. De Waal (2013, p. 28) goes on 

to quote from a letter of Charles Peirce of 18 November 1894 to his brother, Harvard 

University mathematician James Mills Peirce (1834–1906) stating that demonstration, 

prrof, is just “the pavement over which the mathematician drives his team with the goal in 

view and with a plan for reaching it.” But, by the nature of the role of these other aspects of 

mathematical reasoning, some care must be taken by Peirce of the ontological status of 

geometric entities under investigation in a manner that is absent from Russell’s (1901, pp. 

83–84), where diagrams play only an ancillary role, as merely an aide de mémoire, and the 

proof have an altogether hypothetical nature, such that, while “[fo]rmerly, it was held by 

philosophers and mathematicians alike that the proofs in Geometry depended upon the 

figures” (Russell 1901, 99); but  

 

“nowadays, this is known to be false. In the best books there are no 

figures at all. The reasoning proceeds from a set of axioms laid down to 

begin with. If a figure is used, all sorts of things seem obviously to follow, 

which no formal reasoning can prove from explicit axioms, and which, as 
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a matter of fact, are accepted only because they are obvious. By 

banishing the figure, it became possible to discover all the axioms that 

are needed; and in this way all sorts of possibilities, which would have 

otherwise remained undetected, are brought to light.” 

 

 With this in view, Peirce’s attempts at a “New Elements of Mathematics (Καιnὰ 

Στοχεία)”9 was intended as a replacement, built upon the principles of formal logic, of 

Euclid’s Elements, incorporating the development of non-Euclidean geometries. 

  

§4. Conclusion 

 

Turning back to Russell, then. we note his little-known paper “The Teaching of Euclid” 

(Russell 1902), in which Russell took Euclid seriously to task for the lack of the “logical 

excellence” which Euclid was reputed to have presented in his Elements, and which had 

traditionally been ascribed to him since antiquity. Against the concept of Euclid’s Elements 

as a masterpiece and exemplar of logical reasoning, because Euclid’s “logical excellence is 

transcendent,” Russell began in his essay “The Teaching Euclid” (1902, p. 165) by 

asserting that this claim “vanishes on a close inspection. His definitions to not always 

define, his axioms are not always indemonstrable, his demonstrations require many axioms 

of which he is quite unconscious. A valid proof retains its demonstrative force when no 

figure is drawn, but very many of Euclid’s earlier proofs fail before this text.” Among the 

examples of problems are the first proposition, which assumes, without warrant, the 

intersection of the circles used in the construction; another example is the fourth 

proposition, which Russell calls “a tissue of nonsense”, given that superposition is “a 

logically worthless device,” and a logical contradiction arises when, taking the triangles as 

spatial rather than material, one engages the idea of moving them, while, if taking them as 

material, they cannot be supposed to be perfectly rigid and thus, when superposed, they are 

certain to be slightly deformed from their previous shape. Russell argued that some of 

Euclid’s proofs were erroneous, and that some alleged demonstrations were not really even 

proofs at all, properly so-called. This is quite apart even from the question of the 

correctness and independence of Euclid’s controversial Fifth Postulate, the Parallel 

Postulate, and the possibility or impossibility of non-Euclidean geometries. Rather, 

Russell’s criticism of Euclid hinged upon the nature of proof.  

 By way of example, Russell explains, in The Principles of Mathematics (1903, §15, 

p. 14) that: 

  

“The fifth postulate of Euclid follows from the fourth: if the fourth is true, 

so is the fifth, while if the fifth is false, so is the fourth. This is a case of 

material implication, for both propositions are absolute constants, not 

dependent for their meaning, not depending upon the assigning of a value 

                                                           
9 Included in (Peirce 1975, vol. 2). 
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to a variable. But each of them states a formal implication. The fourth 

states that if x and y are triangles fulfilling certain conditions, then x and 

y are triangles fulfilling certain other conditions, and that this implication 

holds for all values of x and y; and the fifth states that if x is an isosceles 

triangle, x has angles at the base equal.” 10  

 

 In writing of Euclid in “The Teaching of Euclid” (1902), Russell pointedly insisted 

that Euclid’s so-called logical proofs depended upon one’s mathematical intuition, rather 

than rigorous formal deduction, and that the intuitive inferences drawn in Euclid relied 

almost entirely, if indeed not wholly, upon the construction of the diagrams. The search for 

the kind of absolute certainty, in more geometrico and the encounter with the failure of 

Euclid to provide logically valid proofs for his propositions, the reliance upon intuition and 

geometric construction rather than strictly deductive reasoning, as well as the more 

questions regarding Euclid’s parallel postulate and the legitimacy of Euclidean and non-

Euclidean geometries, is what drove Russell to logicism.11  

 It was, likewise, Peirce’s interaction with non-Euclidean geometries, along with the 

Euclidean geometry as its rival, that drove his conclusion that Euclid is “riddled with 

fallacies…and is thoroughly unmathematical….” The major significant difference between 

Peirce and Russell is that, although both identified the problem as lack of logical rigor and 

the role of intuition, Russell, unlike Peirce, found the cause in the excessive reliance by 

Euclid and his successors upon geometrical constructions and the visual aspects of the 

diagrams employed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
10 The standard English translation, in the classic edition by Thomas Little Heath (1861–1940) for 

Euclid’s fourth and fifth postulates are, respectively (Euclid 1926, vol. 1, p. 154): “That all right 

triangles are equal to one another” and (Euclid 1926, vol. 1, p. 155): That, if a straight line falling on 

two straight lines make the interior angles on the same side less than two right angles, the two straight 

lines, if produced indefinitely, meet on that side on which are the angles less than two right angles.”  
11 See (Anellis 1995) for the role which geometry played in Russell’s rejection of idealism and 

adoption of logicism. 
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